Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon S3 TablesとAmazon S3 Metadataを触ってみた / 202...
Search
kasacchiful
February 01, 2025
Programming
0
300
Amazon S3 TablesとAmazon S3 Metadataを触ってみた / 20250201-jawsug-tochigi-s3tables-s3metadata
2025/02/01 (土) JAWS-UG栃木支部#0 にて発表した資料。
勉強会サイト
https://jawsug-tochigi.connpass.com/event/342140/
kasacchiful
February 01, 2025
Tweet
Share
More Decks by kasacchiful
See All by kasacchiful
いろんな世界を見てみよう / 20250508ninno_tech_fest
kasacchiful
0
13
Amazon Q Developer for CLIのある生活 / 20250427ai_craft_hacks_niigata1
kasacchiful
1
54
AWSのコンテナサービス / jawsug-akita-aws-container-services
kasacchiful
0
61
データ基盤でのコンテナ活用事例 / jawsug-akita-data-platform-with-container
kasacchiful
0
61
データ基盤でのコンテナ活用事例 / jawsug-niigata21-data-platform-with-container
kasacchiful
0
95
AWSのコンテナサービス / jawsug_niigata21_aws_container_services
kasacchiful
1
84
Amazon S3 TablesとAmazon S3 Metadataを動かしてみた / 20250125-niigata-5min-tech-lt
kasacchiful
0
32
dbt coreとFargateでデータ変換 / 20240928-jawsug-toyama-hokuriku-shinkansen
kasacchiful
1
120
What we keep in mind when migrating from Serverless Framework to AWS CDK and AWS SAM
kasacchiful
1
420
Other Decks in Programming
See All in Programming
Fiber Scheduler vs. General-Purpose Parallel Client
hayaokimura
1
280
GitHub Copilot for Azureを使い倒したい
ymd65536
1
300
Browser and UI #2 HTML/ARIA
ken7253
2
170
Road to RubyKaigi: Making Tinny Chiptunes with Ruby
makicamel
4
530
Making TCPSocket.new "Happy"!
coe401_
1
2.9k
iOSアプリで測る!名古屋駅までの 方向と距離
ryunakayama
0
150
複雑なフォームの jotai 設計 / Designing jotai(state) for Complex Forms #layerx_frontend
izumin5210
6
1.5k
Instrumentsを使用した アプリのパフォーマンス向上方法
hinakko
0
230
generative-ai-use-cases(GenU)の推しポイント ~2025年4月版~
hideg
1
370
Носок на сок
bo0om
0
1.1k
設計の本質:コード、システム、そして組織へ / The Essence of Design: To Code, Systems, and Organizations
nrslib
10
3.7k
2ヶ月で生産性2倍、お買い物アプリ「カウシェ」4チーム同時改善の取り組み
ike002jp
1
110
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Code Review Best Practice
trishagee
67
18k
Six Lessons from altMBA
skipperchong
28
3.7k
Writing Fast Ruby
sferik
628
61k
Music & Morning Musume
bryan
47
6.5k
What's in a price? How to price your products and services
michaelherold
245
12k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
178
53k
The Language of Interfaces
destraynor
157
25k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.5k
Faster Mobile Websites
deanohume
306
31k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
119
51k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
780
Transcript
Amazon S 3 TablesとAmazon S 3 Metadataを触ってみた 2 0 2
5 / 0 2 / 0 1 JAWS-UG栃 木 #0 笠原 宏
自己 紹介 2 • 好きなAWSサービス ◯ S 3 , Lambda,
Step Functions • コミュニティ運営 ◦ JAWS-UG新潟 / Python機械学習勉強会 in 新潟 ◦ Cloudflare Meetup Niigata ◦ JaSST新潟 / ASTER正会員 / SWANII / etc. • AWS Community Builder ◦ Serverless (since 2 0 2 2 ) ◦ 笠原 宏 (@kasacchiful) ◦ クラスメソッド株式会社データ事業本部 ◦ JAWS-UG新潟 支 部 ◦ 新潟県新潟市在住 2
JAWS-UG 新潟 開催形式 3 本編勉強会 • 不定期開催 / 2〜3時間程度 /
オフライン • 事前にテーマ決めて開催 プチキャッチアップ会 • 毎週 木 曜夜21時 / 1時間程度 / オンライン • その場で気になる記事 見 たり、お悩み相談受けたり
Amazon S 3 Tables を触ってみた 4
Amazon S 3 Tables 5 AWS re:Invent 2 0 2
4 で公開 • Apache Iceberg形式に最適化され たオブジェクトストア • Athena, EMR, Spark等からクエリ 可能 • 汎 用 ストレージと 比 べて最 大 3倍の クエリ性能 ・ 10倍のトランザク ション処理 IUUQTEFWDMBTTNFUIPEKQBSUJDMFTSFJOWFOUBNB[POTUBCMFT
東京リージョンでも使える 6 IUUQTEFWDMBTTNFUIPEKQBSUJDMFTBNB[POTUBCMFTUPLZPSFHJPOHB
Amazon S 3 Tables の使 用 例 7 ログデータをData Firehoseを使って、S
3 Tablesに保管し、Athenaで分析
実際に触ってみる 8 分析サービスとの統合を有効化すると、テーブルバケットが作成できる
実際に触ってみる 9 テーブル作成は、Spark Shellから spark.sql() を実 行 (今回はCloudShell上で) spark-shell \
--packages org.apache.iceberg:iceberg-spark-runtime- 3.5_2.12:1.6.1,software.amazon.s3tables:s3-tables-catalog-for-iceberg- runtime:0.1.3,software.amazon.awssdk:s3tables:2.29.26,software.amazon.awssdk:s3:2.29.26,so ftware.amazon.awssdk:sts:2.29.26,software.amazon.awssdk:kms:2.29.26,software.amazon.awssdk :dynamodb:2.29.26,software.amazon.awssdk:kms:2.29.26,software.amazon.awssdk:glue:2.29.26 \ --conf spark.sql.catalog.s3tablesbucket=org.apache.iceberg.spark.SparkCatalog \ --conf spark.sql.catalog.s3tablesbucket.catalog- impl=software.amazon.s3tables.iceberg.S3TablesCatalog \ --conf spark.sql.catalog.s3tablesbucket.warehouse=<Table bucketのARN> \ --conf spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions \ --conf spark.driver.extraJavaOptions="-Djava.security.manager=allow"
実際に触ってみる 10 テーブル作成は、Spark Shellから spark.sql() を実 行 (今回はCloudShell上で) spark.sql(" CREATE
NAMESPACE IF NOT EXISTS s3tablesbucket.sample_namespace ") spark.sql(" SHOW NAMESPACES IN s3tablesbucket ").show() spark.sql(" CREATE TABLE IF NOT EXISTS s3tablesbucket.sample_namespace.sales ( product string, amount int, timestamp timestamp ) using iceberg ") spark.sql(" INSERT INTO s3tablesbucket.sample_namespace.sales ( product, amount, timestamp ) VALUES ( 'Laptop', 1200, '2023-12-01 10:30:00' ) “) ... spark.sql(" SELECT * FROM s3tablesbucket.sample_namespace.sales ").show()
実際に触ってみる 11 テーブル作成は、Spark Shellから spark.sql() を実 行 (今回はCloudShell上で)
実際に触ってみる 12 Lake Formationで権限付与すれば、AthenaからSelectクエリ実 行 できる
補 足 : Spark導 入 が 面 倒なら、AWS CLIとAthenaで遊べます 13
テーブル作成までCLI、データ操作からAthena IUUQTEFWDMBTTNFUIPEKQBSUJDMFTTDIFNBEF fi OJUJPOTUBCMFTDSFBUFUBCMFXJUIBXTDMJ
Amazon S 3 Metadata を触ってみた 14
Amazon S 3 Metadata 15 AWS re:Invent 2 0 2
4 で公開 • S 3 オブジェクトのメタデータを 自 動的に Apache Icebergテーブルに保存 • S 3 オブジェクトのメタデータを効率的に クエリ可能 • メタデータ: オブジェクトキー ・ 作成/変更 時間、ストレージクラス、暗号化状態など • ユーザ定義メタデータも設定 ・ クエリ可能 • バックエンドでS 3 Tablesを利 用 IUUQTEFWDMBTTNFUIPEKQBSUJDMFTBNB[POTCVDLFUNFUBEBUBQSFWJFX
GAになりました 16 東京リージョンではまだ IUUQTEFWDMBTTNFUIPEKQBSUJDMFTHBBNB[POTNFUBEBUB
Amazon S 3 Metadata の使 用 例 17 画像ファイルのメタデータ情報を機械学習で読み取り、S 3
Metadataで保存
実際に触ってみる 18 先にテーブルバケットを作成しておく
実際に触ってみる 19 汎 用 バケット作成後、メタデータ設定を作成する
実際に触ってみる 20 テーブルバケットとテーブル名を指定。テーブルは事前に作成不要。
実際に触ってみる 21 Lake Formationで権限付与後、Athenaからメタデータテーブルが参照できる。
実際に触ってみる 22 汎 用 バケットの画像ファイルを配置して数分後、メタデータが確認できる
実際に触ってみる 23 アップロードやコピーの際に、ユーザ定義メタデータを編集できる
実際に触ってみる 24 ユーザ定義メタデータの値を取得することも可能
まとめ 25
まとめ 26 S 3 Tables と S 3 Metadata を
触ってみた • Amazon S 3 Tables ◦ Apache Iceberg形式に最適化されたオブジェクトストア • Amazon S 3 Metadata ◦ S 3 オブジェクトのメタデータを 自 動的にApache Icebergテーブル (S 3 Tables) に保存 • 分析 用 途に利 用 する際の選択肢の1つ ◦ Lake Formationを有効化する必要があるため、まずは別AWSアカウント上で検証を推奨
宣伝 27
JAWS-UG 新潟 #21 28 初 心 者向けコンテナハンズオン • 2025年3 月
15 日 ( 土 ) 13:00開始 ◦ 会場: Prototype Cafe (新潟市中央区)
JAWS-UG 新潟 #22 & JAWS-UG 北陸新幹線 #3 29 4 月
12 日 ( 土 ) に 上越で初開催 • 2025年4 月 12 日 ( 土 ) 13:00 開始 (予定) • 会場: ミュゼ雪 小 町 (上越市 高田 ) ◦ 北陸新幹線「上越妙 高 駅」乗り換え、えちごトキメキ鉄道「 高田 駅」から徒歩5分 ◦ 当 日 は「第100回 高田 城址公園 観桜会」開催期間中のため、例年通りならば新潟駅発の 臨時快速が出るはず (2025年1 月 現在は未定)
おしまい 30