Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon S3 TablesとAmazon S3 Metadataを触ってみた / 202...
Search
kasacchiful
February 01, 2025
Programming
0
320
Amazon S3 TablesとAmazon S3 Metadataを触ってみた / 20250201-jawsug-tochigi-s3tables-s3metadata
2025/02/01 (土) JAWS-UG栃木支部#0 にて発表した資料。
勉強会サイト
https://jawsug-tochigi.connpass.com/event/342140/
kasacchiful
February 01, 2025
Tweet
Share
More Decks by kasacchiful
See All by kasacchiful
ワイがおすすめする新潟の食 / 20250530phpconf-niigata-eve
kasacchiful
0
120
生成AIでメタデータを生成してみた / 20250525generate-metadata-using-generative-ai
kasacchiful
0
50
Strands Agents SDK で AIエージェント作成 を試してみた / 20250525strands-agents
kasacchiful
0
43
いろんな世界を見てみよう / 20250508ninno_tech_fest
kasacchiful
0
23
Amazon Q Developer for CLIのある生活 / 20250427ai_craft_hacks_niigata1
kasacchiful
1
71
AWSのコンテナサービス / jawsug-akita-aws-container-services
kasacchiful
0
66
データ基盤でのコンテナ活用事例 / jawsug-akita-data-platform-with-container
kasacchiful
0
69
データ基盤でのコンテナ活用事例 / jawsug-niigata21-data-platform-with-container
kasacchiful
0
100
AWSのコンテナサービス / jawsug_niigata21_aws_container_services
kasacchiful
1
91
Other Decks in Programming
See All in Programming
TypeScript だけを書いて Tauri でデスクトップアプリを作ろう / Tauri with only TypeScript
tris5572
2
480
TVer iOSチームの共通認識の作り方 - Findy Job LT iOSアプリ開発の裏側 開発組織が向き合う課題とこれから
techtver
PRO
0
610
rbs-traceを使ってWEARで型生成を試してみた After RubyKaigi 2025〜ZOZO、ファインディ、ピクシブ〜 / tried rbs-trace on WEAR
oyamakei
0
460
AIにコードを生成するコードを作らせて、再現性を担保しよう! / Let AI generate code to ensure reproducibility
yamachu
7
5.6k
少数精鋭エンジニアがフルスタック力を磨く理由 -そしてAI時代へ-
rebase_engineering
0
110
Interface vs Types ~型推論が過多推論~
hirokiomote
1
200
2025年のz-index設計を考える
tak_dcxi
13
5.1k
DevDay2025-OracleDatabase-kernel-addressing-history
oracle4engineer
PRO
6
1.5k
TSConfigからTypeScriptの世界を覗く
planck16
2
1.2k
JSAI2025 RecSysChallenge2024 優勝報告
unonao
1
300
技術的負債と戦略的に戦わざるを得ない場合のオブザーバビリティ活用術 / Leveraging Observability When Strategically Dealing with Technical Debt
yoshiyoshifujii
0
160
テスト分析入門/Test Analysis Tutorial
goyoki
8
2.5k
Featured
See All Featured
How to Ace a Technical Interview
jacobian
276
23k
Navigating Team Friction
lara
185
15k
Code Review Best Practice
trishagee
68
18k
Rails Girls Zürich Keynote
gr2m
94
13k
Side Projects
sachag
453
42k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
5
640
Rebuilding a faster, lazier Slack
samanthasiow
81
9k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Producing Creativity
orderedlist
PRO
345
40k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Facilitating Awesome Meetings
lara
54
6.4k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.5k
Transcript
Amazon S 3 TablesとAmazon S 3 Metadataを触ってみた 2 0 2
5 / 0 2 / 0 1 JAWS-UG栃 木 #0 笠原 宏
自己 紹介 2 • 好きなAWSサービス ◯ S 3 , Lambda,
Step Functions • コミュニティ運営 ◦ JAWS-UG新潟 / Python機械学習勉強会 in 新潟 ◦ Cloudflare Meetup Niigata ◦ JaSST新潟 / ASTER正会員 / SWANII / etc. • AWS Community Builder ◦ Serverless (since 2 0 2 2 ) ◦ 笠原 宏 (@kasacchiful) ◦ クラスメソッド株式会社データ事業本部 ◦ JAWS-UG新潟 支 部 ◦ 新潟県新潟市在住 2
JAWS-UG 新潟 開催形式 3 本編勉強会 • 不定期開催 / 2〜3時間程度 /
オフライン • 事前にテーマ決めて開催 プチキャッチアップ会 • 毎週 木 曜夜21時 / 1時間程度 / オンライン • その場で気になる記事 見 たり、お悩み相談受けたり
Amazon S 3 Tables を触ってみた 4
Amazon S 3 Tables 5 AWS re:Invent 2 0 2
4 で公開 • Apache Iceberg形式に最適化され たオブジェクトストア • Athena, EMR, Spark等からクエリ 可能 • 汎 用 ストレージと 比 べて最 大 3倍の クエリ性能 ・ 10倍のトランザク ション処理 IUUQTEFWDMBTTNFUIPEKQBSUJDMFTSFJOWFOUBNB[POTUBCMFT
東京リージョンでも使える 6 IUUQTEFWDMBTTNFUIPEKQBSUJDMFTBNB[POTUBCMFTUPLZPSFHJPOHB
Amazon S 3 Tables の使 用 例 7 ログデータをData Firehoseを使って、S
3 Tablesに保管し、Athenaで分析
実際に触ってみる 8 分析サービスとの統合を有効化すると、テーブルバケットが作成できる
実際に触ってみる 9 テーブル作成は、Spark Shellから spark.sql() を実 行 (今回はCloudShell上で) spark-shell \
--packages org.apache.iceberg:iceberg-spark-runtime- 3.5_2.12:1.6.1,software.amazon.s3tables:s3-tables-catalog-for-iceberg- runtime:0.1.3,software.amazon.awssdk:s3tables:2.29.26,software.amazon.awssdk:s3:2.29.26,so ftware.amazon.awssdk:sts:2.29.26,software.amazon.awssdk:kms:2.29.26,software.amazon.awssdk :dynamodb:2.29.26,software.amazon.awssdk:kms:2.29.26,software.amazon.awssdk:glue:2.29.26 \ --conf spark.sql.catalog.s3tablesbucket=org.apache.iceberg.spark.SparkCatalog \ --conf spark.sql.catalog.s3tablesbucket.catalog- impl=software.amazon.s3tables.iceberg.S3TablesCatalog \ --conf spark.sql.catalog.s3tablesbucket.warehouse=<Table bucketのARN> \ --conf spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions \ --conf spark.driver.extraJavaOptions="-Djava.security.manager=allow"
実際に触ってみる 10 テーブル作成は、Spark Shellから spark.sql() を実 行 (今回はCloudShell上で) spark.sql(" CREATE
NAMESPACE IF NOT EXISTS s3tablesbucket.sample_namespace ") spark.sql(" SHOW NAMESPACES IN s3tablesbucket ").show() spark.sql(" CREATE TABLE IF NOT EXISTS s3tablesbucket.sample_namespace.sales ( product string, amount int, timestamp timestamp ) using iceberg ") spark.sql(" INSERT INTO s3tablesbucket.sample_namespace.sales ( product, amount, timestamp ) VALUES ( 'Laptop', 1200, '2023-12-01 10:30:00' ) “) ... spark.sql(" SELECT * FROM s3tablesbucket.sample_namespace.sales ").show()
実際に触ってみる 11 テーブル作成は、Spark Shellから spark.sql() を実 行 (今回はCloudShell上で)
実際に触ってみる 12 Lake Formationで権限付与すれば、AthenaからSelectクエリ実 行 できる
補 足 : Spark導 入 が 面 倒なら、AWS CLIとAthenaで遊べます 13
テーブル作成までCLI、データ操作からAthena IUUQTEFWDMBTTNFUIPEKQBSUJDMFTTDIFNBEF fi OJUJPOTUBCMFTDSFBUFUBCMFXJUIBXTDMJ
Amazon S 3 Metadata を触ってみた 14
Amazon S 3 Metadata 15 AWS re:Invent 2 0 2
4 で公開 • S 3 オブジェクトのメタデータを 自 動的に Apache Icebergテーブルに保存 • S 3 オブジェクトのメタデータを効率的に クエリ可能 • メタデータ: オブジェクトキー ・ 作成/変更 時間、ストレージクラス、暗号化状態など • ユーザ定義メタデータも設定 ・ クエリ可能 • バックエンドでS 3 Tablesを利 用 IUUQTEFWDMBTTNFUIPEKQBSUJDMFTBNB[POTCVDLFUNFUBEBUBQSFWJFX
GAになりました 16 東京リージョンではまだ IUUQTEFWDMBTTNFUIPEKQBSUJDMFTHBBNB[POTNFUBEBUB
Amazon S 3 Metadata の使 用 例 17 画像ファイルのメタデータ情報を機械学習で読み取り、S 3
Metadataで保存
実際に触ってみる 18 先にテーブルバケットを作成しておく
実際に触ってみる 19 汎 用 バケット作成後、メタデータ設定を作成する
実際に触ってみる 20 テーブルバケットとテーブル名を指定。テーブルは事前に作成不要。
実際に触ってみる 21 Lake Formationで権限付与後、Athenaからメタデータテーブルが参照できる。
実際に触ってみる 22 汎 用 バケットの画像ファイルを配置して数分後、メタデータが確認できる
実際に触ってみる 23 アップロードやコピーの際に、ユーザ定義メタデータを編集できる
実際に触ってみる 24 ユーザ定義メタデータの値を取得することも可能
まとめ 25
まとめ 26 S 3 Tables と S 3 Metadata を
触ってみた • Amazon S 3 Tables ◦ Apache Iceberg形式に最適化されたオブジェクトストア • Amazon S 3 Metadata ◦ S 3 オブジェクトのメタデータを 自 動的にApache Icebergテーブル (S 3 Tables) に保存 • 分析 用 途に利 用 する際の選択肢の1つ ◦ Lake Formationを有効化する必要があるため、まずは別AWSアカウント上で検証を推奨
宣伝 27
JAWS-UG 新潟 #21 28 初 心 者向けコンテナハンズオン • 2025年3 月
15 日 ( 土 ) 13:00開始 ◦ 会場: Prototype Cafe (新潟市中央区)
JAWS-UG 新潟 #22 & JAWS-UG 北陸新幹線 #3 29 4 月
12 日 ( 土 ) に 上越で初開催 • 2025年4 月 12 日 ( 土 ) 13:00 開始 (予定) • 会場: ミュゼ雪 小 町 (上越市 高田 ) ◦ 北陸新幹線「上越妙 高 駅」乗り換え、えちごトキメキ鉄道「 高田 駅」から徒歩5分 ◦ 当 日 は「第100回 高田 城址公園 観桜会」開催期間中のため、例年通りならば新潟駅発の 臨時快速が出るはず (2025年1 月 現在は未定)
おしまい 30