Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon S3 TablesとAmazon S3 Metadataを触ってみた / 202...
Search
kasacchiful
February 01, 2025
Programming
0
270
Amazon S3 TablesとAmazon S3 Metadataを触ってみた / 20250201-jawsug-tochigi-s3tables-s3metadata
2025/02/01 (土) JAWS-UG栃木支部#0 にて発表した資料。
勉強会サイト
https://jawsug-tochigi.connpass.com/event/342140/
kasacchiful
February 01, 2025
Tweet
Share
More Decks by kasacchiful
See All by kasacchiful
データ基盤でのコンテナ活用事例 / jawsug-niigata21-data-platform-with-container
kasacchiful
0
91
AWSのコンテナサービス / jawsug_niigata21_aws_container_services
kasacchiful
1
79
Amazon S3 TablesとAmazon S3 Metadataを動かしてみた / 20250125-niigata-5min-tech-lt
kasacchiful
0
27
dbt coreとFargateでデータ変換 / 20240928-jawsug-toyama-hokuriku-shinkansen
kasacchiful
1
110
What we keep in mind when migrating from Serverless Framework to AWS CDK and AWS SAM
kasacchiful
1
410
AWSでIcebergを使ってデータウェアハウスを構築してみる / 20240810-jawsug-akita
kasacchiful
0
55
サーバーレスパターンを元にAWS CDKでデータ基盤を構築する / 20240731_classmethod_odyssey_online_build_a_data_infrastructures_using_aws_cdk_based_on_serverless_patterns
kasacchiful
0
540
AWS IoT 1-clickがサービス終了するので、SORACOMに移行した話 / 20240518-jawsug-niigata-iotlt-niigata
kasacchiful
0
290
AWS Application Composerで始める、 サーバーレスなデータ基盤構築 / 20240406-jawsug-hokuriku-shinkansen
kasacchiful
1
620
Other Decks in Programming
See All in Programming
いまさら聞けない生成AI入門: 「生成AIを高速キャッチアップ」
soh9834
15
4.5k
SQL Server ベクトル検索
odashinsuke
0
160
AI Agents with JavaScript
slobodan
0
210
AHC045_解説
shun_pi
0
460
小田原でみんなで一句詠みたいな #phpcon_odawara
stefafafan
0
320
パスキーのすべて / 20250324 iddance Lesson.5
kuralab
0
150
Day0 初心者向けワークショップ実践!ソフトウェアテストの第一歩
satohiroyuki
0
830
Ruby's Line Breaks
yui_knk
2
460
Code smarter, not harder - How AI Coding Tools Boost Your Productivity | Webinar 2025
danielsogl
0
120
Preact、HooksとSignalsの両立 / Preact: Harmonizing Hooks and Signals
ssssota
1
1.3k
Bedrock×MCPで社内ブログ執筆文化を育てたい!
har1101
6
870
ミリしらMCP勉強会
watany
4
740
Featured
See All Featured
KATA
mclloyd
29
14k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.5k
Code Reviewing Like a Champion
maltzj
522
39k
Docker and Python
trallard
44
3.3k
Faster Mobile Websites
deanohume
306
31k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
RailsConf 2023
tenderlove
30
1.1k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.2k
It's Worth the Effort
3n
184
28k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
119
51k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
A Tale of Four Properties
chriscoyier
158
23k
Transcript
Amazon S 3 TablesとAmazon S 3 Metadataを触ってみた 2 0 2
5 / 0 2 / 0 1 JAWS-UG栃 木 #0 笠原 宏
自己 紹介 2 • 好きなAWSサービス ◯ S 3 , Lambda,
Step Functions • コミュニティ運営 ◦ JAWS-UG新潟 / Python機械学習勉強会 in 新潟 ◦ Cloudflare Meetup Niigata ◦ JaSST新潟 / ASTER正会員 / SWANII / etc. • AWS Community Builder ◦ Serverless (since 2 0 2 2 ) ◦ 笠原 宏 (@kasacchiful) ◦ クラスメソッド株式会社データ事業本部 ◦ JAWS-UG新潟 支 部 ◦ 新潟県新潟市在住 2
JAWS-UG 新潟 開催形式 3 本編勉強会 • 不定期開催 / 2〜3時間程度 /
オフライン • 事前にテーマ決めて開催 プチキャッチアップ会 • 毎週 木 曜夜21時 / 1時間程度 / オンライン • その場で気になる記事 見 たり、お悩み相談受けたり
Amazon S 3 Tables を触ってみた 4
Amazon S 3 Tables 5 AWS re:Invent 2 0 2
4 で公開 • Apache Iceberg形式に最適化され たオブジェクトストア • Athena, EMR, Spark等からクエリ 可能 • 汎 用 ストレージと 比 べて最 大 3倍の クエリ性能 ・ 10倍のトランザク ション処理 IUUQTEFWDMBTTNFUIPEKQBSUJDMFTSFJOWFOUBNB[POTUBCMFT
東京リージョンでも使える 6 IUUQTEFWDMBTTNFUIPEKQBSUJDMFTBNB[POTUBCMFTUPLZPSFHJPOHB
Amazon S 3 Tables の使 用 例 7 ログデータをData Firehoseを使って、S
3 Tablesに保管し、Athenaで分析
実際に触ってみる 8 分析サービスとの統合を有効化すると、テーブルバケットが作成できる
実際に触ってみる 9 テーブル作成は、Spark Shellから spark.sql() を実 行 (今回はCloudShell上で) spark-shell \
--packages org.apache.iceberg:iceberg-spark-runtime- 3.5_2.12:1.6.1,software.amazon.s3tables:s3-tables-catalog-for-iceberg- runtime:0.1.3,software.amazon.awssdk:s3tables:2.29.26,software.amazon.awssdk:s3:2.29.26,so ftware.amazon.awssdk:sts:2.29.26,software.amazon.awssdk:kms:2.29.26,software.amazon.awssdk :dynamodb:2.29.26,software.amazon.awssdk:kms:2.29.26,software.amazon.awssdk:glue:2.29.26 \ --conf spark.sql.catalog.s3tablesbucket=org.apache.iceberg.spark.SparkCatalog \ --conf spark.sql.catalog.s3tablesbucket.catalog- impl=software.amazon.s3tables.iceberg.S3TablesCatalog \ --conf spark.sql.catalog.s3tablesbucket.warehouse=<Table bucketのARN> \ --conf spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions \ --conf spark.driver.extraJavaOptions="-Djava.security.manager=allow"
実際に触ってみる 10 テーブル作成は、Spark Shellから spark.sql() を実 行 (今回はCloudShell上で) spark.sql(" CREATE
NAMESPACE IF NOT EXISTS s3tablesbucket.sample_namespace ") spark.sql(" SHOW NAMESPACES IN s3tablesbucket ").show() spark.sql(" CREATE TABLE IF NOT EXISTS s3tablesbucket.sample_namespace.sales ( product string, amount int, timestamp timestamp ) using iceberg ") spark.sql(" INSERT INTO s3tablesbucket.sample_namespace.sales ( product, amount, timestamp ) VALUES ( 'Laptop', 1200, '2023-12-01 10:30:00' ) “) ... spark.sql(" SELECT * FROM s3tablesbucket.sample_namespace.sales ").show()
実際に触ってみる 11 テーブル作成は、Spark Shellから spark.sql() を実 行 (今回はCloudShell上で)
実際に触ってみる 12 Lake Formationで権限付与すれば、AthenaからSelectクエリ実 行 できる
補 足 : Spark導 入 が 面 倒なら、AWS CLIとAthenaで遊べます 13
テーブル作成までCLI、データ操作からAthena IUUQTEFWDMBTTNFUIPEKQBSUJDMFTTDIFNBEF fi OJUJPOTUBCMFTDSFBUFUBCMFXJUIBXTDMJ
Amazon S 3 Metadata を触ってみた 14
Amazon S 3 Metadata 15 AWS re:Invent 2 0 2
4 で公開 • S 3 オブジェクトのメタデータを 自 動的に Apache Icebergテーブルに保存 • S 3 オブジェクトのメタデータを効率的に クエリ可能 • メタデータ: オブジェクトキー ・ 作成/変更 時間、ストレージクラス、暗号化状態など • ユーザ定義メタデータも設定 ・ クエリ可能 • バックエンドでS 3 Tablesを利 用 IUUQTEFWDMBTTNFUIPEKQBSUJDMFTBNB[POTCVDLFUNFUBEBUBQSFWJFX
GAになりました 16 東京リージョンではまだ IUUQTEFWDMBTTNFUIPEKQBSUJDMFTHBBNB[POTNFUBEBUB
Amazon S 3 Metadata の使 用 例 17 画像ファイルのメタデータ情報を機械学習で読み取り、S 3
Metadataで保存
実際に触ってみる 18 先にテーブルバケットを作成しておく
実際に触ってみる 19 汎 用 バケット作成後、メタデータ設定を作成する
実際に触ってみる 20 テーブルバケットとテーブル名を指定。テーブルは事前に作成不要。
実際に触ってみる 21 Lake Formationで権限付与後、Athenaからメタデータテーブルが参照できる。
実際に触ってみる 22 汎 用 バケットの画像ファイルを配置して数分後、メタデータが確認できる
実際に触ってみる 23 アップロードやコピーの際に、ユーザ定義メタデータを編集できる
実際に触ってみる 24 ユーザ定義メタデータの値を取得することも可能
まとめ 25
まとめ 26 S 3 Tables と S 3 Metadata を
触ってみた • Amazon S 3 Tables ◦ Apache Iceberg形式に最適化されたオブジェクトストア • Amazon S 3 Metadata ◦ S 3 オブジェクトのメタデータを 自 動的にApache Icebergテーブル (S 3 Tables) に保存 • 分析 用 途に利 用 する際の選択肢の1つ ◦ Lake Formationを有効化する必要があるため、まずは別AWSアカウント上で検証を推奨
宣伝 27
JAWS-UG 新潟 #21 28 初 心 者向けコンテナハンズオン • 2025年3 月
15 日 ( 土 ) 13:00開始 ◦ 会場: Prototype Cafe (新潟市中央区)
JAWS-UG 新潟 #22 & JAWS-UG 北陸新幹線 #3 29 4 月
12 日 ( 土 ) に 上越で初開催 • 2025年4 月 12 日 ( 土 ) 13:00 開始 (予定) • 会場: ミュゼ雪 小 町 (上越市 高田 ) ◦ 北陸新幹線「上越妙 高 駅」乗り換え、えちごトキメキ鉄道「 高田 駅」から徒歩5分 ◦ 当 日 は「第100回 高田 城址公園 観桜会」開催期間中のため、例年通りならば新潟駅発の 臨時快速が出るはず (2025年1 月 現在は未定)
おしまい 30