Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Symmetry-Breaking at Defects in Perovskites

Symmetry-Breaking at Defects in Perovskites

Slides for my talk 'Symmetry-Breaking & Reconstruction at Defects in Perovskites' at MRS Spring 2023, San Francisco – discussing the issue of global optimisation for defects in solids, its particular relevance & importance for perovskites, and our work (ShakeNBreak) on tackling this issue.

YouTube video recording: https://youtu.be/yzevtGjGALI

ShakeNBreak website: https://shakenbreak.readthedocs.io/en/latest/

Our general defect calculation package doped is available here: https://github.com/SMTG-UCL/doped

See our open-access papers on defect structure-searching here:
https://www.nature.com/articles/s41524-023-00973-1
https://joss.theoj.org/papers/10.21105/joss.04817
https://www.nature.com/articles/s41567-023-02049-9

Questions welcome! For other computational photovoltaics, defects and disorder talks, have a look at my YouTube channel!
https://www.youtube.com/SeanRKavanagh
For other research articles see:
https://bit.ly/3pBMxOG

Other references:
Matter Preview of Defect Structure Searching: https://www.sciencedirect.com/science/article/pii/S2590238521002733
Metastable defects : https://doi.org/10.1039/D2FD00043A
Recombination at V_Cd in CdTe (case study): https://pubs.acs.org/doi/abs/10.1021/acsenergylett.1c00380

Avatar for Seán R. Kavanagh

Seán R. Kavanagh

May 02, 2023
Tweet

More Decks by Seán R. Kavanagh

Other Decks in Research

Transcript

  1. Standard defect supercell relaxation Seán R. Kavanagh‡ & Irea Mosquera-Lois,‡

    Aron Walsh, David O. Scanlon MRS Spring 2023 Symmetry-Breaking & Reconstruction at Defects in Perovskites
  2. Standard defect supercell relaxation Seán R. Kavanagh‡ & Irea Mosquera-Lois,‡

    Aron Walsh, David O. Scanlon MRS Spring 2023 Symmetry-Breaking & Reconstruction at Defects in Perovskites
  3. Defect Calculation Workflow 11 ➡ Energy ➡ Concentration ➡ Transition

    Level ➡ Deep/Shallow ➡ Doping ➡ Carrier capture ➡ Diffusion ➡ …
  4. Metal-metal dimers possible for vacancies in semiconductors: Lany & Zunger

    Phys Rev Lett 2004 Lany & Zunger Phys Rev B 2005 VCd in CdTe
  5. Metal-metal dimers possible for vacancies in semiconductors: Lany & Zunger

    Phys Rev Lett 2004 Lany & Zunger Phys Rev B 2005 VCd in CdTe
  6. Metal-metal dimers possible for vacancies in semiconductors: Lany & Zunger

    Phys Rev Lett 2004 Lany & Zunger Phys Rev B 2005 VCd in CdTe
  7. VCd in CdTe Tei in CdTe Standard Relaxation ShakeNBreak (Our

    Method) Kavanagh*, Scanlon, Walsh, Freysoldt Faraday Discussions 2022
  8. Metal-metal dimers possible for vacancies in semiconductors: Lany & Zunger

    Phys Rev Lett 2004 Lany & Zunger Phys Rev B 2005 Kavanagh, Walsh, Scanlon ACS Energy Lett 2021 VCd in CdTe
  9. Metal-metal dimers possible for vacancies in semiconductors: Lany & Zunger

    Phys Rev Lett 2004 Lany & Zunger Phys Rev B 2005 Kavanagh, Walsh, Scanlon ACS Energy Lett 2021 VCd in CdTe
  10. Potentially the Wrong Defect! Mosquera-Lois & Kavanagh* Matter 2021 Kavanagh,

    Walsh, Scanlon ACS Energy Lett 2021 Mosquera-Lois‡ & Kavanagh‡*, Walsh and Scanlon* npj Comput Mater 2023 Standard defect supercell relaxation
  11. How Prevalent is This? Tested on a diverse range of

    materials: Si, CdTe, GaAs, Sb2 S3 , Sb2 Se3 , CeO2 , In2 O3 , ZnO, anatase-TiO2 Energy-lowering reconstructions, missed by standard relaxations, found in every material studied Mosquera-Lois‡ & Kavanagh‡*, Walsh and Scanlon* npj Comput Mater 2023
  12. How Important/Prevalent is This? Very Literature Examples (reconstructions found serendipitously

    or through manual searching): • Gallium vacancies, migration and compensation in Ga2 O3 1 • Catalytic activity (divalent metal dopants in CeO2 )2 • CdTe solar cell performance3,4 • Defect absorption / bandgap lowering (Sn-doped Cs3 Bi2 Br9 )5 • Persistent Photoconductivity in Si, GaAs DX centres1,6 • Oxide polarons (in BiVO4 )7 • Colour centres and deep anion vacancies in II-VI compounds8 1. Varley et al J. Phys.: Condens. Matter 2011 2. Kehoe, Scanlon, Watson, Chem Mater 2011 3. Kavanagh, Walsh, Scanlon ACS Energy Lett 2021 4. Kavanagh*, Scanlon, Walsh, Freysoldt Faraday Discussions 2022 5. Krajewska, Kavanagh et al. Chem Sci 2021 6. Du & Zhang Phys Rev B 2005 7. Osterbacka, Ambrosio, Wiktor J Phys Chem C 2022 8. Lany & Zunger Phys Rev Lett 2004 Inaccurate Structure ➡ Inaccurate Formation Energy ➡ Inaccurate: ➡ Energy ➡ Concentration ➡ Transition Level ➡ Deep/Shallow ➡ Doping ➡ Carrier capture ➡ Diffusion ➡ …
  13. ShakeNBreak: Summary • Obtaining the correct defect structure is important!

    • Our current procedure for defect calculations is incomplete • Energy-lowering reconstructions prevalent in a wide & diverse range of materials/defects. • ShakeNBreak = easily-implemented method to combat this and aid the accuracy of defect calculations shakenbreak.readthedocs.io 1. Mosquera-Lois‡ & Kavanagh‡*, Walsh, Scanlon* npj Comp Mater 2023 2. Mannodi-Kanakkithodi Nature Physics 2023 3. Mosquera-Lois‡ & Kavanagh‡*, Walsh, Scanlon* J. Open Source Software 2022 4. Mosquera-Lois & Kavanagh*, Matter 2021 5. Kavanagh, Walsh, Scanlon ACS Energy Lett 2021 6. Kavanagh*, Scanlon, Walsh, Freysoldt; Faraday Discussions 2022
  14. Indicators of Defect Reconstructions & Metastability • Multinary composition •

    Reduced crystal symmetry • Space to distort / ‘open’ crystal structures • Mixed ionic/covalent bonding • Dynamic structure (i.e. more complex PES)
  15. Case Study: Double Perovskites (A2 BIBIIIX6 ) Cs2 AgBiBr6 Large

    energy lowering of ΔE: -0.1 – -2.75 eV for many antisite defects e.g.
  16. Case Study: Double Perovskites (A2 BIBIIIX6 ) • AgCs 0,

    AgCs +1 (all AgCs charge states) • BiCs 0, BiCs +1, BiCs +2 (all BiCs charge states) • BrCs 0 • CsAg -1, CsAg 0, CsAg +1 (all CsAg charge states) • BiAg 0, BiAg +1 • BiAg -2, BiAg -1, BrAg 0 (all BrAg charge states) • AgBi -2 • BrBi 0, BrBi -1, BrBi -2, BrBi -3, BrBi -4 (all BrBi charge states) • AgBr 0, AgBr +1, AgBr +2 (all AgBr charge states) • BiBr 0, BiBr +1, BiBr +2, BiBr +3, BiBr +4, BiBr +5 (all BiBr charge states) • CsBr 0, CsBr +1, CsBr +2 (all CsBr charge states) Cs2 AgBiBr6 Large energy lowering of ΔE: -0.1 – -2.75 eV for many antisite defects
  17. BiCs 0 – Neutral Bismuth-on-Caesium Unperturbed; 2 Bi-Br bonds, slightly

    distorted octahedra ShakeNBreak: tetra-coordinated Bi-Br, off-centred Ag -> ΔE = -1.25 eV
  18. BiCs 0 – Neutral Bismuth-on-Caesium Unperturbed; 2 Bi-Br bonds, slightly

    distorted octahedra ShakeNBreak: tetra-coordinated Bi-Br, off-centred Ag -> ΔE = -1.25 eV
  19. BiCs 0 – Neutral Bismuth-on-Caesium Unperturbed; 2 Bi-Br bonds, slightly

    distorted octahedra ShakeNBreak (metastable): similar tetra-coordinated Bi-Br (square planar), off-centred Ag -> ΔE = -1.1 eV
  20. BrAg -2 – Fully-ionised Bromine-on-Silver Unperturbed; 2 elongated Br-Br bonds,

    undistorted octahedra ShakeNBreak: BrAg displaces from octahedron centre, gives 7-fold coordinated Bi and off-centred Ag -> ΔE = -1.5 eV
  21. BiAg 0 – Neutral Bismuth-on-Silver Unperturbed; Bi-Br octahedron replacing Ag-Br,

    minimal distortion ShakeNBreak: Tetragonal elongation of BiAg octahedron -> square-planar coordination, displaced Ag -> ΔE = -0.35 eV
  22. Case Study: Vacancy-Ordered Perovskites (A2 BIVX6 ) AI 2 MIVX6

    ≋ A(00/MIV)X3 Kavanagh et al. ‘Frenkel Excitons in Vacancy- Ordered Titanium Halide Perovskites (Cs2 TiX6 )’ J. Phys. Chem. Lett. 2022, 13, 10965–10975 Kavanagh‡ & Liga‡ et al. In Submission Cs2 TiI6 Large energy lowering of ΔE: -0.4 – -2.5 eV for many native defects: • VTi 0, VTi -1, VTi -2, VTi -3, VTi -4 (all VTi charge states) • Ii 0, Ii -1 (all Ii charge states) • Csi +1 • ICs 0, ICs -1, ICs -2 (all ICs charge states) • TiCs 0, TiCs +1, TiCs +2, TiCs +3 (all TiCs charge states) • ITi 0, ITi -1 • TiI +2, TiI +5
  23. VTi 0 – Neutral Titanium Vacancy Unperturbed; distorted contracted octahedron

    ShakeNBreak: effective ITi + VI complex -> ΔE = -1.6 eV
  24. TiCs +3 – Fully-ionised Titanium-on-Caesium Unperturbed; Ti-Ti bond within Iodine

    octahedron ShakeNBreak: Ti split, one goes to vacant octahedral site near missing caesium -> ΔE = -2.5 eV
  25. TiI +5 – Fully-ionised Titanium-on-Iodine Unperturbed; Ti-Ti bond, distorted octahedron

    ShakeNBreak: off-centred Ti to vacant octahedral site -> ΔE = -2 eV
  26. TiI +5 – Fully-ionised Titanium-on-Iodine Unperturbed; Ti-Ti bond, distorted octahedron

    ShakeNBreak: off-centred Ti to vacant octahedral site -> ΔE = -2 eV
  27. TiI +5 – Fully-ionised Titanium-on-Iodine Unperturbed; Ti-Ti bond, distorted octahedron

    ShakeNBreak: off-centred Ti to vacant octahedral site -> ΔE = -2 eV
  28. What about polarons / self-trapped excitons? A4 MIIX6 : ➡

    High thermal sensitivity of PL lifetimes ➡ Ultra-high spatial and thermal resolution devices (for remote thermography) MII = Pb, Sn 1. Yakunin, S. et al. Nature Materials 2019 2. B. Kang & K. Biswas J. Phys. Chem. Lett. 2018
  29. Previous calculations (unperturbed relaxations) predict tetragonal contracted octahedron for self-trapped

    exciton structure. Unperturbed; Tetragonally-Contracted Octahedron ShakeNBreak; Tetragonally-Expanded Octahedron ΔE ~ -0.4 (MII = Pb, Sn)
  30. Does it matter? Thanks to Dr. Youngkwang Jung @ Cambridge

    for the figure! Initial octahedron structure
  31. Energy-lowering reconstructions prevalent in a wide & diverse range of

    materials/defects. 44 Importance of Defect Structure Searching! shakenbreak.readthedocs.io 1. Mosquera-Lois‡ & Kavanagh‡*, Walsh, Scanlon* npj Comp Mater 2023 2. Mannodi-Kanakkithodi Nature Physics 2023 3. Mosquera-Lois‡ & Kavanagh‡*, Walsh, Scanlon* J. Open Source Software 2022 4. Mosquera-Lois & Kavanagh*, Matter 2021 5. Kavanagh, Walsh, Scanlon ACS Energy Lett 2021 6. Kavanagh*, Scanlon, Walsh, Freysoldt; Faraday Discussions 2022 Particularly strong for perovskites, due to: • Multinary composition • Reduced crystal symmetry • Space to distort / ‘open’ crystal structures • Presence of ionic & covalent bonding • Dynamic crystal structure
  32. Studies using ShakeNBreak (and finding lower energy defect structures): •

    X. Wang, S. R. Kavanagh, D. O. Scanlon, A. Walsh; Under Review at Phys Rev Lett (arXiv: 2302.04901) • C. Krajewska, S. R. Kavanagh et al. Chem Sci 2021 • S. R. Kavanagh*, D. O. Scanlon, A. Walsh, C. Freysoldt Faraday Discussions 2022 • J. Cen et al; J. Mater. Chem. A (Accepted) 2023 • J. Willis, Q. Zhou et al. In preparation. • Y. T. Huang & S. R. Kavanagh et al. Nature Communications 2022 • A. Nicolson et al; Under Review at J. Am. Chem. Soc. (ChemRxiv: 10.26434/chemrxiv-2023-7454p) • Y. Kumagai et al; In submission • A. Samli et al;. In preparation Acknowledgements Profs David Scanlon & Aron Walsh Irea Mosquera-Lois @Kavanagh_Sean_
  33. Standard Relaxation (Metastable) Example: Vacancies in Sb2 Se3 /Sb2 S3

    Reveals rare 4-electron negative-U behavior and ultra- strong self-compensation in Sb2 S3 & Sb2 Se3 Difference in predicted VSb concentration = 1021 Our Method (Ground-state) Wang, Kavanagh, Scanlon, Walsh; ‘Four-electron Negative-U Vacancy Defects in Antimony Selenide’ Under Review (arXiv: 2302.04901) Do we expect this behaviour in perovskites?
  34. Key Takeaways • Obtaining the correct defect structure is important!

    • Our current procedure for defect calculations is incomplete • Energy-lowering reconstructions prevalent in a wide & diverse range of materials/defects. • ShakeNBreak = easily-implemented method to combat this and ensure the accuracy of defect calculations @Kavanagh_Sean_ [email protected] 1. Mosquera-Lois‡ & Kavanagh‡*, Walsh, Scanlon* npj Comp Mater 2023 2. Mosquera-Lois‡ & Kavanagh‡*, Walsh, Scanlon* J. Open Source Software 2022 3. Mosquera-Lois & Kavanagh*, Matter 2021 4. Kavanagh, Walsh, Scanlon ACS Energy Lett 2021 5. Kavanagh*, Scanlon, Walsh, Freysoldt; Faraday Discussions 2022
  35. How Important is This? Very VCd -1 VCd 0 h+

    e- Our Method (Ground-state) Standard Relaxation (Metastable) h+ capture e– capture h+ capture e– capture Kavanagh, Walsh, Scanlon ACS Energy Lett 2021 Inaccurate Structure ➡ Inaccurate Formation Energy ➡ Inaccurate: ➡ Energy ➡ Concentration ➡ Transition Level ➡ Deep/Shallow ➡ Doping ➡ Carrier capture ➡ Diffusion ➡ …
  36. Why isn’t this an issue for bulk structure prediction? Good

    initial guesses from experimental databases, starting us close to the global minimum For unknown crystal structure prediction, this is a huge avenue of research Ø PES exploration But defects are unknown structures! No database of known defect structures Ø Efficient structure-searching techniques required