Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Art and Science of Visual Analytics Episode 1
Search
Kazuya Araki
November 25, 2019
Science
1
130
Art and Science of Visual Analytics Episode 1
Kazuya Araki
November 25, 2019
Tweet
Share
More Decks by Kazuya Araki
See All by Kazuya Araki
Tableau事例紹介 / Tableau Case Study of Eureka
kazuya_araki_tokyo
1
960
Tableau事例紹介 & 課題共有
kazuya_araki_tokyo
1
1.8k
統計とは? @ICUHS
kazuya_araki_tokyo
0
290
License Management @BizReach, Inc.
kazuya_araki_tokyo
0
75
Art and Science of Visual Analytics Episode 0
kazuya_araki_tokyo
0
65
Art and Science of Visual Analytics Episode 2
kazuya_araki_tokyo
0
65
Art and Science of Visual Analytics Episode 3
kazuya_araki_tokyo
0
58
Tableau + Pythonとデータのあり方
kazuya_araki_tokyo
2
130
株式会社ビズリーチの紹介@Data Analyst Meetup Tokyo vol.8
kazuya_araki_tokyo
0
86
Other Decks in Science
See All in Science
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
120
データマイニング - ノードの中心性
trycycle
PRO
0
250
データベース02: データベースの概念
trycycle
PRO
2
880
研究って何だっけ / What is Research?
ks91
PRO
1
110
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
320
データベース03: 関係データモデル
trycycle
PRO
1
240
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
120
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.1k
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
310
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
630
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
0
270
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
190
Featured
See All Featured
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Statistics for Hackers
jakevdp
799
220k
Faster Mobile Websites
deanohume
309
31k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
For a Future-Friendly Web
brad_frost
179
9.9k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Building Applications with DynamoDB
mza
96
6.6k
Side Projects
sachag
455
43k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
460
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Writing Fast Ruby
sferik
628
62k
It's Worth the Effort
3n
186
28k
Transcript
Art and Science of Visual Analytics Episode 1: Colors
None
Episode 0 Visual Analytics 考えなくても、理解できるように工夫する Preattentive Attributes Visual Analyticsを助ける考え方(= Art
and Science)
今回は、色
Preattentive Attributesの種類 Color - 色 Form - 形 Position -
位置 Movement - 動き
Form Color Position
TL;DR Colors Rules Power of Colors
Hue
Learn the Basics of Color Theory to Know What Looks
Good
None
None
None
記憶の三段階 タイプ 保持期間 容量制限 Sensory memory(即時記憶) 200~500ミリ秒 特徴のあるものだけ。 Short-term memory(短期記憶)
10~15秒 一度に7項目まで。 Long-term memory(長期記憶) 生涯 個人差がある。
None
Best Practices of Hue
メッセージ性さえあれば、色相は少なくても伝わる
色は極限まで少なくする オススメは3色ルール • ベースカラー : 5 • メインカラー : 4 • アクセントカラー:
1 (もしくは4色ルール) • ベースカラー : 4 • メインカラー : 3 • サブカラー : 2 • アクセントカラー: 1 必要な情報を必要な分だけ
https://www.pinterest.com/pin/514465957416721893/
Saturation
https://twitter.com/KaorixTab/status/1106358530401931264
Best Practices of Saturation
強調したい(注目させたい)ときは、原色に近い彩度に オススメは赤系と緑系 • 赤系は危険、注意、アラートなど、ネガティブ要素を示す力がある • 緑系は安心、平常心、達成感など、ポジティブ要素を示す力がある 隠蔽したい(注意を逸らせたい)ときは、彩度を落とす オススメは薄灰色 • 強調と組み合わせると、強調
/ 隠蔽の強さが相対的に増す • 不必要な情報を落とす場合、非常に効果的にはたらく手法 強調と隠蔽
caution!
Color blindness
What Color(s)?
カラーユニバーサルデザイン 色は誰にでも同じに見えるとは限らない 多様な色覚を持つ方に配慮し、情報がなるべく正確に伝わるように利用者目線に 立ってデザインすることが重要。 詳細は、東京都カラーユニバーサルガイドラインを参照。
TL;DR Colors Rules 3色ルール ベース : メイン : アクセント =
5 : 4 : 1 Power of Colors 強調と隠蔽 見る人によって色の世界は異なる
None