Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Art and Science of Visual Analytics Episode 2
Search
Kazuya Araki
November 25, 2019
Science
0
71
Art and Science of Visual Analytics Episode 2
Kazuya Araki
November 25, 2019
Tweet
Share
More Decks by Kazuya Araki
See All by Kazuya Araki
Tableau事例紹介 / Tableau Case Study of Eureka
kazuya_araki_tokyo
1
1k
Tableau事例紹介 & 課題共有
kazuya_araki_tokyo
1
1.9k
統計とは? @ICUHS
kazuya_araki_tokyo
0
310
License Management @BizReach, Inc.
kazuya_araki_tokyo
0
88
Art and Science of Visual Analytics Episode 0
kazuya_araki_tokyo
0
76
Art and Science of Visual Analytics Episode 1
kazuya_araki_tokyo
1
130
Art and Science of Visual Analytics Episode 3
kazuya_araki_tokyo
0
59
Tableau + Pythonとデータのあり方
kazuya_araki_tokyo
2
130
株式会社ビズリーチの紹介@Data Analyst Meetup Tokyo vol.8
kazuya_araki_tokyo
0
91
Other Decks in Science
See All in Science
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
450
データベース08: 実体関連モデルとは?
trycycle
PRO
0
1k
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
120
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
170
データマイニング - ウェブとグラフ
trycycle
PRO
0
210
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
400
知能とはなにかーヒトとAIのあいだー
tagtag
0
120
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
20k
HDC tutorial
michielstock
0
240
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
150
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
450
MCMCのR-hatは分散分析である
moricup
0
520
Featured
See All Featured
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
92
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Practical Orchestrator
shlominoach
190
11k
How GitHub (no longer) Works
holman
316
140k
Docker and Python
trallard
47
3.7k
Designing for Performance
lara
610
69k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
KATA
mclloyd
PRO
32
15k
Raft: Consensus for Rubyists
vanstee
141
7.2k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Transcript
Art and Science of Visual Analytics Episode 2: Forms and
Positions
None
Episode 0 Visual Analytics 考えなくても、理解できるように工夫する Preattentive Attributes Visual Analyticsを助ける考え方(= Art
and Science)
今回は、形と位置
Preattentive Attributesの種類 Color - 色 Form - 形 Position -
位置 Movement - 動き
Form Color Position
TL;DR (Visual) Illusion Shapes and Position
ゲームをしましょう :)
どちらが大きい?
どちらが大きい?
傾きが大きいのは?
傾きが大きいのは?
人間の視覚を騙すのはとても簡単
None
None
None
以上を頭の片隅に
記憶の三段階 タイプ 保持期間 容量制限 Sensory memory(即時記憶) 200~500ミリ秒 特徴のあるものだけ。 Short-term memory(短期記憶)
10~15秒 一度に7項目まで。 Long-term memory(長期記憶) 生涯 個人差がある。
Best Practices of Shapes and Position
組み合わせの法則
向き + 位置 = 折れ線グラフ
長さ + 幅 + 位置 = 棒グラフ
形状 + 位置 + グループ = 散布図
複雑そうなグラフも紐解くと組み合わせ
長さ + 幅 + 位置 + サイズ = ウォーターフォールチャート
サイズ + 位置 + グループ = バブルチャート
サイズ + グループ = パックバブルチャート
空間を最大限活用する
サイズ + 位置 + 囲い = ツリーマップ
位置(緯度、経度) + 囲い = 地図
色も組み合わせてみると、さらに強力に
長さ + 幅 + 位置 + 囲い + 色相 =
積み上げ棒グラフ
向き + 位置 + 囲い + 色相 = 面グラフ
サイズ + 向き(角度) + 囲い + 色相 = 円グラフ
位置 + 囲い + 彩度 = ヒートマップ
すべてのグラフは Preattentive Attributesから できている
TL;DR (Visual) Illusion 人間の視覚情報は容易に騙される(錯覚、錯視) 視覚を悪用しないように注意する Shapes and Position すべてのグラフを構成している要素はPreattentive Attributesである
色と組み合わせると強力な表現力となる
None