Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Art and Science of Visual Analytics Episode 0
Search
Kazuya Araki
November 25, 2019
Science
0
87
Art and Science of Visual Analytics Episode 0
Kazuya Araki
November 25, 2019
Tweet
Share
More Decks by Kazuya Araki
See All by Kazuya Araki
Tableau事例紹介 / Tableau Case Study of Eureka
kazuya_araki_tokyo
1
1.1k
Tableau事例紹介 & 課題共有
kazuya_araki_tokyo
1
2.1k
統計とは? @ICUHS
kazuya_araki_tokyo
0
310
License Management @BizReach, Inc.
kazuya_araki_tokyo
0
100
Art and Science of Visual Analytics Episode 1
kazuya_araki_tokyo
1
150
Art and Science of Visual Analytics Episode 2
kazuya_araki_tokyo
0
79
Art and Science of Visual Analytics Episode 3
kazuya_araki_tokyo
0
65
Tableau + Pythonとデータのあり方
kazuya_araki_tokyo
2
140
株式会社ビズリーチの紹介@Data Analyst Meetup Tokyo vol.8
kazuya_araki_tokyo
0
93
Other Decks in Science
See All in Science
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2.3k
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
あなたに水耕栽培を愛していないとは言わせない
mutsumix
1
250
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
190
HajimetenoLT vol.17
hashimoto_kei
1
170
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
150
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
PRO
0
140
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
720
機械学習 - SVM
trycycle
PRO
1
980
(メタ)科学コミュニケーターからみたAI for Scienceの同床異夢
rmaruy
0
160
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
400
先端因果推論特別研究チームの研究構想と 人間とAIが協働する自律因果探索の展望
sshimizu2006
3
760
Featured
See All Featured
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Done Done
chrislema
186
16k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
200
How to make the Groovebox
asonas
2
1.9k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
4 Signs Your Business is Dying
shpigford
187
22k
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
1
49
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
280
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Transcript
Art and Science of Visual Analytics Episode 0: Prologue
None
TL;DR Visual Analytics Preattentive Attributes
ところで、なぜ、データは Visualization(可視化)しないと いけないのでしょうか?
解の一つ
ゲームをしましょう :)
A. 3こ •はいくつありますか?
A. 18こ •はいくつありますか?
8は左から何番目ですか? 1, 1, 2, 3, 5, 8, 11, 13, 21,
34 A. 左から6番目
A. 12こ 8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679
いかがでしたか?
Art and Science of Visual Analytics Episode 0: Prologue
Art and Science of Visual Analytics
What is “Art” ?
What is “Art” ? Not “芸術、美術” , but “技術、技巧” .
Not “感覚的” , but “創造的” . Not “理解し難いもの” , but “理解しやすいもの” .
Art and Science of Visual Analytics
What is “Science” ? 体系化された知識の総称 科学的手法に基く知識、学問 自然科学 科学 - Wikipedia
Art and Science of Visual Analytics
None
どういうことか?
認識する -> 記憶する
記憶の三段階 タイプ 保持期間 容量制限 Sensory memory(即時記憶) 200~500ミリ秒 特徴のあるものだけ。 Short-term memory(短期記憶)
10~15秒 一度に7項目まで。 Long-term memory(長期記憶) 生涯 個人差がある。
いかに無駄を排除し 適切な情報を取捨選択できるか
None
記憶する -> 理解する
cf. 現実にあるグラフ
None
None
ということで、Creatorライセンスを お持ちのみなさま、がんばって きれいなグラフを作りましょう!
Visual Analyticsは、 ネ申エクセルや、クロス集計を 非難しているわけではありません。
ただ、
気をつけないといけない。
Creatorのみなさん、 あなたが作っているものは、 こうなっていませんか?
あるいは、
Viewerのみなさん、 あなたが見ているものは、 こうなっていませんか?
None
None
None
None
男女別人口及び人口性比-全国,都道府県(大正9年~平成27年)
None
伝えたいことは何か?
Best Practices of Visual Analytics
記憶と人間の感覚を有効に利用する 見なくてもよいものを見せない 読まなくてよいものを読ませない 覚えなくてよいものを覚えさせない 考えなくても、理解できる(ように仕向ける)
Don’t think, Feel?
No. Think, and Feel!
Creatorのみなさん、 Viewerが一目で理解できる Vizを作りましょう
Viewerのみなさん、 理解し難いVizを発見したら Creatorにアクションしましょう
Preattentive Attributes
Preattentive = 前注意的な Attributes = 属性
None
Preattentive Attributesの種類 Color - 色 Form - 形 Position -
位置 Movement - 動き 今回は対象外
Form Color Position
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
None
Preattentive Attributesを使うということ 色でわかる 形でわかる 位置でわかる 「考えなくても、理解できる」を助ける
TL;DR Visual Analytics 考えなくても、理解できるように工夫する Preattentive Attributes Visual Analyticsを助ける考え方(= Art and
Science)
None
None
余談ですが
Form Color Position
これってもしかして🙄
None
None
None
None
None