Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Art and Science of Visual Analytics Episode 0
Search
Kazuya Araki
November 25, 2019
Science
0
44
Art and Science of Visual Analytics Episode 0
Kazuya Araki
November 25, 2019
Tweet
Share
More Decks by Kazuya Araki
See All by Kazuya Araki
Tableau事例紹介 / Tableau Case Study of Eureka
kazuya_araki_tokyo
1
540
Tableau事例紹介 & 課題共有
kazuya_araki_tokyo
1
1.3k
統計とは? @ICUHS
kazuya_araki_tokyo
0
260
License Management @BizReach, Inc.
kazuya_araki_tokyo
0
51
Art and Science of Visual Analytics Episode 1
kazuya_araki_tokyo
1
110
Art and Science of Visual Analytics Episode 2
kazuya_araki_tokyo
0
42
Art and Science of Visual Analytics Episode 3
kazuya_araki_tokyo
0
43
Tableau + Pythonとデータのあり方
kazuya_araki_tokyo
2
110
株式会社ビズリーチの紹介@Data Analyst Meetup Tokyo vol.8
kazuya_araki_tokyo
0
76
Other Decks in Science
See All in Science
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
210
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
340
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
200
第61回コンピュータビジョン勉強会「BioCLIP: A Vision Foundation Model for the Tree of Life」
x_ttyszk
1
1.7k
Causal discovery based on non-Gaussianity and nonlinearity
sshimizu2006
0
230
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
3
180
拡散モデルの原理紹介
brainpadpr
3
6.1k
ACL読み会2024@名大 REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation
takuma_matsubara
0
160
論文紹介: PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models (WSDM 2024)
ynakano
0
220
The thin line between reconstruction, classification, and hallucination in brain decoding
ykamit
1
1.2k
Healthcare Innovation through Business Entrepreneurship
clintwinters
0
200
Reconciling Accuracy, Cost, and Latency of Inference Serving Systems
pjamshidi
0
120
Featured
See All Featured
Building Applications with DynamoDB
mza
93
6.3k
Into the Great Unknown - MozCon
thekraken
35
1.7k
GraphQLとの向き合い方2022年版
quramy
44
14k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.8k
The World Runs on Bad Software
bkeepers
PRO
67
11k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
46
2.4k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
13
1k
KATA
mclloyd
29
14k
GraphQLの誤解/rethinking-graphql
sonatard
69
10k
The Invisible Side of Design
smashingmag
299
50k
Transcript
Art and Science of Visual Analytics Episode 0: Prologue
None
TL;DR Visual Analytics Preattentive Attributes
ところで、なぜ、データは Visualization(可視化)しないと いけないのでしょうか?
解の一つ
ゲームをしましょう :)
A. 3こ •はいくつありますか?
A. 18こ •はいくつありますか?
8は左から何番目ですか? 1, 1, 2, 3, 5, 8, 11, 13, 21,
34 A. 左から6番目
A. 12こ 8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679
いかがでしたか?
Art and Science of Visual Analytics Episode 0: Prologue
Art and Science of Visual Analytics
What is “Art” ?
What is “Art” ? Not “芸術、美術” , but “技術、技巧” .
Not “感覚的” , but “創造的” . Not “理解し難いもの” , but “理解しやすいもの” .
Art and Science of Visual Analytics
What is “Science” ? 体系化された知識の総称 科学的手法に基く知識、学問 自然科学 科学 - Wikipedia
Art and Science of Visual Analytics
None
どういうことか?
認識する -> 記憶する
記憶の三段階 タイプ 保持期間 容量制限 Sensory memory(即時記憶) 200~500ミリ秒 特徴のあるものだけ。 Short-term memory(短期記憶)
10~15秒 一度に7項目まで。 Long-term memory(長期記憶) 生涯 個人差がある。
いかに無駄を排除し 適切な情報を取捨選択できるか
None
記憶する -> 理解する
cf. 現実にあるグラフ
None
None
ということで、Creatorライセンスを お持ちのみなさま、がんばって きれいなグラフを作りましょう!
Visual Analyticsは、 ネ申エクセルや、クロス集計を 非難しているわけではありません。
ただ、
気をつけないといけない。
Creatorのみなさん、 あなたが作っているものは、 こうなっていませんか?
あるいは、
Viewerのみなさん、 あなたが見ているものは、 こうなっていませんか?
None
None
None
None
男女別人口及び人口性比-全国,都道府県(大正9年~平成27年)
None
伝えたいことは何か?
Best Practices of Visual Analytics
記憶と人間の感覚を有効に利用する 見なくてもよいものを見せない 読まなくてよいものを読ませない 覚えなくてよいものを覚えさせない 考えなくても、理解できる(ように仕向ける)
Don’t think, Feel?
No. Think, and Feel!
Creatorのみなさん、 Viewerが一目で理解できる Vizを作りましょう
Viewerのみなさん、 理解し難いVizを発見したら Creatorにアクションしましょう
Preattentive Attributes
Preattentive = 前注意的な Attributes = 属性
None
Preattentive Attributesの種類 Color - 色 Form - 形 Position -
位置 Movement - 動き 今回は対象外
Form Color Position
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
None
Preattentive Attributesを使うということ 色でわかる 形でわかる 位置でわかる 「考えなくても、理解できる」を助ける
TL;DR Visual Analytics 考えなくても、理解できるように工夫する Preattentive Attributes Visual Analyticsを助ける考え方(= Art and
Science)
None
None
余談ですが
Form Color Position
これってもしかして🙄
None
None
None
None
None