Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Journal club] MOKA: Open-Vocabulary Robotic Ma...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
November 15, 2024
Technology
0
130
[Journal club] MOKA: Open-Vocabulary Robotic Manipulation through Mark-Based Visual Prompting
Semantic Machine Intelligence Lab., Keio Univ.
PRO
November 15, 2024
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
[Journal club] V-DPO: Mitigating Hallucination in Large Vision Language Models via Vision-Guided Direct Preference Optimization
keio_smilab
PRO
0
55
[Journal club] Model Alignment as Prospect Theoretic Optimization
keio_smilab
PRO
0
83
[Journal club] DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models
keio_smilab
PRO
0
45
[Journal club] LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
keio_smilab
PRO
2
76
Will multimodal language processing change the world?
keio_smilab
PRO
3
520
[Journal club] Seeing the Unseen: Visual Common Sense for Semantic Placement
keio_smilab
PRO
0
130
[Journal club] Language-Embedded Gaussian Splats (LEGS): Incrementally Building Room-Scale Representations with a Mobile Robot
keio_smilab
PRO
0
130
[Journal club] RAM: Retrieval-Based Affordance Transfer for Generalizable Zero-Shot Robotic Manipulation
keio_smilab
PRO
1
160
[Journal club] Simplified State Space Layers for Sequence Modeling
keio_smilab
PRO
0
150
Other Decks in Technology
See All in Technology
Dapr For Java Developers SouJava 25
salaboy
1
130
RAGの基礎から実践運用まで:AWS BedrockとLangfuseで実現する構築・監視・評価
sonoda_mj
0
430
どっちの API SHOW?SharePoint 開発における SharePoint REST API Microsoft Graph API の違い / Which API show? Differences between Microsoft Graph API and SharePoint REST API
karamem0
0
100
Amazon GuardDuty Malware Protection for Amazon S3を使おう
ryder472
2
100
お問い合わせ対応の改善取り組みとその進め方
masartz
1
350
Keynote - KCD Brazil - Platform Engineering on K8s (portuguese)
salaboy
0
120
ソフトウェアプロジェクトの成功率が上がらない原因-「社会価値を考える」ということ-
ytanaka5569
0
120
チームビルディング「脅威モデリング」ワークショップ
koheiyoshikawa
0
130
React Server Componentは 何を解決し何を解決しないのか / What do React Server Components solve, and what do they not solve?
kaminashi
6
1.2k
Why Go?
xpmatteo
0
130
SSH公開鍵認証による接続 / Connecting with SSH Public Key Authentication
kaityo256
PRO
2
210
スケールアップ企業のQA組織のバリューを最大限に引き出すための取り組み
tarappo
4
910
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
42
7.4k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
How GitHub (no longer) Works
holman
314
140k
Reflections from 52 weeks, 52 projects
jeffersonlam
349
20k
BBQ
matthewcrist
88
9.5k
For a Future-Friendly Web
brad_frost
176
9.6k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Scaling GitHub
holman
459
140k
Visualization
eitanlees
146
15k
A Modern Web Designer's Workflow
chriscoyier
693
190k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
Embracing the Ebb and Flow
colly
85
4.6k
Transcript
慶應義塾大学 杉浦孔明研究室 名字氏名 MOKA: Open-Vocabulary Robotic Manipulation through Mark-Based Visual
Prompting Kuan Fang, Fangchen Liu, Pieter Abbeel, Sergey Levine (UC Berkeley) RSS 2024 慶應義塾大学 杉浦孔明研究室 是方諒介 Fang, K., Liu, F., Abbeel, P., Levine, S. "MOKA: Open-Vocabulary Robotic Manipulation through Mark-Based Visual Prompting.“ RSS 2024.
概要 背景 ✓ open-vocabularyな指示文に基づく物体操作タスク ✓ 基盤モデルの常識的な知識への期待 提案 ✓ VLMによるhigh/low-levelな2段階のreasoning ✓
VQAに帰着したkeypoint予測に基づくaffordance検出 結果 ✓ 実機において階層的な物体操作タスクを実施し,既存手法を上回る成功率 ✓ ロボティクス基盤モデルによる拡張性を示唆 2
背景:open-vocabularyな指示文に基づく物体操作 ◼ 課題 ◼ 指示文の曖昧さ,複雑性,階層性 ◼ 多様かつ未知の物体/環境への汎化 → 常識的な知識を持つ基盤モデルに期待
LLMは視覚情報が欠落し,3D空間の認知に弱い ☺ VLMにより,視覚と軌道生成との中間的な affordance表現をkeypointとして獲得 3 "Insert the pink roses into the vase." "Put the scissors in the hand."
関連研究:VLMによるkeypoint予測を扱う手法は少ない 4 手法 概要 Code as Policies [Liang+, ICRA23] LLMにより,指示文を実行可能なコードに変換
VLMを用いておらず,視覚的な接地が不十分 VoxPoser [Huang+, CoRL23] voxel value mapを構築し,LLM / VLMを用いてプランニング 性能がvoxel mapの解像度に依存 ViLa [Hu+, 23] GPT-4Vを用いたプランニング low-levelなスキルを事前に定義する必要がある Code as Policies VoxPoser ViLa
提案手法:Marking Open-vocabulary Keypoint Affordances (MOKA) ◼ VLM (GPT-4V) によるhigh /
low-levelな2段階のreasoning ◼ affordance検出を,keypoint / waypoint選択に関するVQAに帰着 ◼ 対象物体の候補点/全体をgrid状に分割した候補領域を観測画像に重畳 5
high-level reasoning:階層的な指示文をサブタスクに分解 ◼ サブタスクごとに把持物体,干渉物体,操作方向を特定 ◼ GroundedSAM [Ren+, 24] により対象物体のセグメンテーションマスクを取得 6
Grounding DINO [Liu+, 23] + SAM [Kirillov+, ICCV23] :プロンプト :指示文 :初期の観測画像
low-level reasoning (1/2):マーキングによる視覚的なプロンプト ◼ VLMは座標を直接予測するより候補から選択する方が正確 (cf. SoM [Yang+, 23]) ◼
keypoint候補:PointNet [Qi+, CVPR17] による輪郭上の 点 + 物体の中心1点 ◼ waypoint候補:観測画像全体をgrid状に分割 → そこから一様に1点をサンプリング 7 SoM
low-level reasoning (2/2):VLMの「選択」によるkeypoint / waypoint予測 ◼ サブタスクごとに把持,作用,干渉keypoint,および動作waypointを選択 8 :プロンプト, :サブタスク,
:現在の観測画像, :マーキング処理
成功例に基づく改良:in-context learning, policy distillation ◼ in-context learning ◼ 3つの成功例(画像,出力)をVLMのプロンプトに追加 ◼
policy distillation ◼ ロボティクス基盤モデル Octo [Ghosh+, 23] ◼ RT-X [Vuong+, CoRL23] データセットの800Kの軌道でpre-trained ◼ 本タスクにおいて,50の軌道でfine-tuning 9 Octo RT-X
定量的結果:既存手法を上回るタスク成功率 [%] ◼ それぞれ2つのサブタスクから成る,合計4タスクを各々10回試行 ◼ 考察 ✓ すべてのサブタスクにおいて,既存手法と同等または上回った ✓ 蒸留の寄与より,data
generatorとしての応用可能性を示唆 10
定性的結果 (1/2):階層的なタスクを正確に実施 ◼ Table Wiping ◼ Laptop Packing 11 "Unplug
the charge cable and close the lid of the laptop." "Move the eyeglasses onto the yellow cloth and use the brush to sweep the snack package to the right side of the table."
定性的結果 (2/2):異なる指示文,配置,形容に対して頑健 ◼ 同じタスクに関して,多様な条件で評価 12
まとめ 背景 ✓ open-vocabularyな指示文に基づく物体操作タスク ✓ 基盤モデルの常識的な知識への期待 提案 ✓ VLMによるhigh/low-levelな2段階のreasoning ✓
VQAに帰着したkeypoint予測に基づくaffordance検出 結果 ✓ 実機において階層的な物体操作タスクを実施し,既存手法を上回る成功率 ✓ ロボティクス基盤モデルによる拡張性を示唆 13
Appendix:疑似コード 14
Appendix:high-level reasoningに用いるプロンプト 15
Appendix:low-level reasoningに用いるプロンプト (1/2) 16 入力に関する説明 keypoint / waypointの定義
Appendix:low-level reasoningに用いるプロンプト (2/2) 17 出力に関する説明
Appendix:その他のタスク 18 ◼ Watch Cleaning ◼ Gift Preparation
Appendix:Ablation Study 19
Appendix:エラー分析 20