Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LangGraphを用いたAIアプリケーションにおけるメモリ永続化の実践
Search
西岡 賢一郎 (Kenichiro Nishioka)
August 30, 2024
Technology
1
660
LangGraphを用いたAIアプリケーションにおけるメモリ永続化の実践
機械学習の社会実装勉強会 第38回 (
https://machine-learning-workshop.connpass.com/event/328440/
) の発表資料です。
西岡 賢一郎 (Kenichiro Nishioka)
August 30, 2024
Tweet
Share
More Decks by 西岡 賢一郎 (Kenichiro Nishioka)
See All by 西岡 賢一郎 (Kenichiro Nishioka)
Conductor: Git Worktreeで実現する並列AIコーディング
knishioka
0
66
ローカルLLMでファインチューニング
knishioka
0
380
自作MCPサーバ入門
knishioka
0
21
成功と失敗の実像と生成AI時代の展望
knishioka
0
55
MCPが変えるAIとの協働
knishioka
1
200
LangFlowではじめるRAG・マルチエージェントシステム構築
knishioka
0
200
DeepSeekを使ったローカルLLM構築
knishioka
0
220
業務ツールをAIエージェントとつなぐ - Composio
knishioka
1
250
LangGraphを使ったHuman in the loop
knishioka
0
320
Other Decks in Technology
See All in Technology
テストを実行してSorbetのsigを書こう!
sansantech
PRO
1
100
Google Cloud で学ぶデータエンジニアリング入門 2025年版 #GoogleCloudNext / 20250805
kazaneya
PRO
22
5.3k
Claude Codeが働くAI中心の業務システム構築の挑戦―AIエージェント中心の働き方を目指して
os1ma
9
2.6k
LTに影響を受けてテンプレリポジトリを作った話
hol1kgmg
0
370
結局QUICで通信は速くなるの?
kota_yata
6
6.6k
Findy Freelance 利用シーン別AI活用例
ness
0
500
バクラクによるコーポレート業務の自動運転 #BetAIDay
layerx
PRO
1
950
Eval-Centric AI: Agent 開発におけるベストプラクティスの探求
asei
0
120
S3 Glacier のデータを Athena からクエリしようとしたらどうなるのか/try-to-query-s3-glacier-from-athena
emiki
0
220
はじめての転職講座/The Guide of First Career Change
kwappa
4
3.9k
Bet "Bet AI" - Accelerating Our AI Journey #BetAIDay
layerx
PRO
4
1.8k
Kiroでインフラ要件定義~テスト を実施してみた
nagisa53
3
360
Featured
See All Featured
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Documentation Writing (for coders)
carmenintech
73
5k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
760
Gamification - CAS2011
davidbonilla
81
5.4k
The Language of Interfaces
destraynor
158
25k
Done Done
chrislema
185
16k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.4k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Transcript
LangGraphを用いた AIアプリケーションにおける メモリ永続化の実践 2024/08/31 機械学習の社会実装勉強会 第 38回 1
今回のお話 AIアプリケーション開発の新たな可能性を開く LangGraphの Checkpointer機能につい て、実際の動作をデモンストレーションを通じて紹介 2
自己紹介 名前 : 西岡 賢一郎 Twitter: @ken_nishi note: https://note.com/kenichiro YouTube:
【経営 xデータサイエンス x開発】西岡 賢一郎のチャンネル 経歴 東京大学で位置予測アルゴリズムを研究し博士 (学術 ) を取得 東京大学博士課程在学中にデータサイエンスのサービスを提供する株式会社 トライディアを設立 トライディアを売却し、 CTOとして 3年半務め、 2021年 10月末に CTOを退職 CDPのスタートアップ (Sr. CSM)・株式会社データインフォームド (CEO)・株 式会社ディースタッツ (CTO) プロダクト開発チーム・データサイエンスチームの立ち上げ 3
LangChainとは 大規模言語モデル( LLM)を使用したアプリケーションを構築するためのフレー ムワーク 複雑な AIタスクを簡単に実装できるようにする さまざまなコンポーネントやツールを提供 4
LangGraphとは LangChainの一部として開発されたライブラリ 状態を持つマルチアクターアプリケーションを構築するためのツール エージェントやマルチエージェントのワークフローを作成可能 5
なぜ永続性が必要か? 1. 文脈の維持 複数の対話にわたって会話の文脈を保持 ユーザーとの長期的な対話を可能に 2. 状態の管理 アプリケーションの現在の状態を保存 必要に応じて以前の状態に戻る能力 3.
エラーからの回復 障害発生時に最後の正常な状態から再開可能 6
永続性の実現方法: Checkpointer LangGraphでは、 「 Checkpointer」を通じて永続性を実現 Checkpionterとは: アプリケーションの状態を保存し、必要に応じて復元する機能 7
Checkpointerの主な特徴 1. セッションメモリ ユーザーとのやり取りの履歴を保存 保存された状態から会話を再開可能 2. エラー回復 最後に成功した保存状態から継続可能 システム障害時の影響を最小限に 3.
ヒューマンインザループ 人間の介入や承認を要する処理の実装 AIと人間の協調作業をスムーズに 8
Checkpointerの実装 LangGraph v0.2で導入された新しいライブラリ: langgraph_checkpoint : 基本インターフェース langgraph_checkpoint_sqlite : SQLiteに保存 (開発・テスト用
) langgraph_checkpoint_postgres : PostgreSQLに保存 (本番環境用 ) 9
LangGraph v0.2 の変更 変数名変更 thread_ts → checkpoint_id parent_ts → parent_checkpoint_id
import方法の変更 旧 : from langgraph.checkpoint import BaseCheckpointSaver 新 : from langgraph.checkpoint.base import BaseCheckpointSaver SQLiteチェックポインターが分離 : langgraph-checkpoint-sqlite 10
Checkpointerの使用例 from langgraph.graph import StateGraph from langgraph.checkpoint.sqlite import SqliteSaver #
グラフの構築 builder = StateGraph(State) # graphをcompileするときにcheckpointerを指定 with SqliteSaver.from_conn_string(":memory:") as memory: graph = builder.compile(checkpointer=memory) 11
Checkpointerの仕組み 12
Checkpointerの利点 1. 一貫性のある長期的な対話 ユーザーとの会話履歴を保持し、文脈に応じた応答が可能 2. 堅牢なアプリケーション エラーや中断からの回復が容易 3. 複雑なワークフローの実現 人間の介入を含む高度な処理フローを構築可能
4. 開発の柔軟性 様々なデータベースに対応可能 カスタム実装の作成が容易 13
考慮事項 1. パフォーマンスへの影響 履歴が増えると LLM呼び出しに時間がかかる可能性 2. カスタマイズの制限 履歴の動的な操作に一部制限あり 3. 実装の選択
使用環境に適した Checkpointer機能の選択が重要 14
デモンストレーション LangGraphの Checkpointer使用の実演 MemorySaver SqliteSaver PostgresSaver ソースコード : https://github.com/knishioka/machine-learning- workshop/blob/main/langchain/langchain_persistence.ipynb
15
まとめ LangGraphの Checkpointerは、永続性を実現する強力なツール 長期的な対話、エラー回復、複雑なワークフローを可能に 適切に使用することで、より洗練された AIアプリケーションの開発が可能 16
参考文献 1. LangGraph公式ドキュメント 2. LangGraph v0.2リリースブログ 3. LangGraph Persistence How-to
17