Upgrade to Pro — share decks privately, control downloads, hide ads and more …

R を用いた分析(補講) (2) — 人工データの生成 / Analysis using R ...

R を用いた分析(補講) (2) — 人工データの生成 / Analysis using R (supplementary) (2) - Generating artificial data

早稲田大学大学院経営管理研究科「企業データ分析」2024 冬のオンデマンド教材 第12回で使用したスライドです。

Avatar for Kenji Saito

Kenji Saito PRO

November 30, 2024
Tweet

More Decks by Kenji Saito

Other Decks in Technology

Transcript

  1. Boxes and whiskers — generated by Stable Diffusion XL v1.0

    2024 12 R ( ) (2) — (WBS) 2024 12 R ( ) (2) — — 2024-11 – p.1/14
  2. ( 20 ) 1 • 2 R • 3 •

    4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 • 11 R ( ) (1) — • 12 R ( ) (2) — • 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/16 ) / (2 ) OK / 2024 12 R ( ) (2) — — 2024-11 – p.3/14
  3. N(µ, σ2) ρ 2 ( : ˆ y = a

    + b1 x1 + b2 x2 + e ) 2024 12 R ( ) (2) — — 2024-11 – p.4/14
  4. N(µ, σ2) “rnorm()” set.seed(173205) # # N(50, 10^2) 100 x

    <- rnorm(n=100, mean=50, sd=10) # x # hist(x) mean(x) sd(x) 2024 12 R ( ) (2) — — 2024-11 – p.5/14
  5. Histogram of x x Frequency 10 20 30 40 50

    60 70 80 0 5 10 15 20 25 30 35 mean(x) : 50.06994 sd(x) : 10.30096 2024 12 R ( ) (2) — — 2024-11 – p.6/14
  6. ρ 2 (1/2) MASS “mvrnorm()” “ .R” # r =

    0.9 # t = 3.7 # r = 15.2 # t = 7.5 # = -0.5 # <- matrix(c( r^2, * t * r, * r * t, t^2 ), nrow=2) 2024 12 R ( ) (2) — — 2024-11 – p.7/14
  7. “mvrnorm()” = S xx S xy S xy S yy

    = S xx rS x S y rS x S y S yy ( r = S xy S x S y ) 2 x, y x, y, z, . . . 2024 12 R ( ) (2) — — 2024-11 – p.8/14
  8. ρ 2 (2/2) MASS “mvrnorm()” “ .R” # set.seed(28284) <-

    mvrnorm(n=100, mu=c( r, t), Sigma= ) <- pmin(pmax( [,1], 13.0), 19.9) <- pmin(pmax( [,2], 0.0), 20.0) “ [,1]” “ [,2]” plot 2024 12 R ( ) (2) — — 2024-11 – p.9/14
  9. 0 5 10 15 20 13 14 15 16 17

    18 ㈇ࡢ┦㛵ࡢ౛ 㐌ᙜࡓࡾࡢㄢእ㐠ື᫬㛫 100m㉮ࡢࢱ࢖࣒ (⛊) r : -0.5932345 ( ) -0.5884094 ( ) 2024 12 R ( ) (2) — — 2024-11 – p.10/14
  10. (1/2) “ .R” n <- 50 # a <- 49.4

    # ( (158cm ) ) # r_father <- 0.306 mean_father <- 168.78 sd_father <- 3.2 # r_mother <- 0.37 mean_mother <- 155.32 sd_mother <- 2.45 2024 12 R ( ) (2) — — 2024-11 – p.11/14
  11. (2/2) “ .R” <- round(rnorm(n=n, mean=mean_father, sd=sd_father), digits=1) <- round(rnorm(n=n,

    mean=mean_mother, sd=sd_mother), digits=1) e <- rnorm(n=n, mean=0, sd=2.8) # <- round(a + r_father * + r_mother * + e, digits=1) 1 “round()” plot 2024 12 R ( ) (2) — — 2024-11 – p.12/14
  12. ፉ㌟㛗 160 165 170 175 152 156 160 164 160

    165 170 175 ∗㌟㛗 152 156 160 164 150 154 158 150 154 158 ẕ㌟㛗 : 34.2484 : 0.3545 : 0.4137 : 0.2831 2024 12 R ( ) (2) — — 2024-11 – p.13/14