Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた分析(補講) (2) — 人工データの生成 / Analysis using R ...
Search
Kenji Saito
PRO
November 30, 2024
Technology
0
44
R を用いた分析(補講) (2) — 人工データの生成 / Analysis using R (supplementary) (2) - Generating artificial data
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬のオンデマンド教材 第12回で使用したスライドです。
Kenji Saito
PRO
November 30, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
01 を動かす〜音声で対話できる自動化されたアシスタント / Running 01 - Automated Assistant with Voice Interaction
ks91
PRO
0
3
AGI (Artificial General Intelligence) の論点 / AGI (Artificial General Intelligence) Issues
ks91
PRO
0
2
Open Interpreter を動かす 〜 自動化されたアシスタントの誕生 / Running Open Interpreter - The Birth of an Automated Assistant
ks91
PRO
0
7
Linux 仮想マシンを動かす(Windows 編)(Mac 編) / Running a Linux Virtual Machine (Windows Edition) (Mac Edition)
ks91
PRO
0
13
(メタ・) ネイチャーポジティブと物質・エネルギーの循環経済 / Being (Meta-)Nature Positive and the Circular Economy of Materials and Energy
ks91
PRO
0
3
対話による知の拡張 / Extending Knowledge Through Dialogue
ks91
PRO
0
35
プロンプトに対する攻撃と対策 / Attacks Against Prompts and Countermeasures
ks91
PRO
0
34
傾聴の理論 〜 傾聴する相棒の創り方 / Theory of Listening and How to Create a Listening Partner
ks91
PRO
0
32
試作とデモンストレーション / Prototyping and Demonstrations
ks91
PRO
0
140
Other Decks in Technology
See All in Technology
Ninno LT
kawaguti
PRO
1
120
ペアーズにおける評価ドリブンな AI Agent 開発のご紹介
fukubaka0825
9
2.7k
CARTA HOLDINGS エンジニア向け 採用ピッチ資料 / CARTA-GUIDE-for-Engineers
carta_engineering
0
27k
Новые мапы в Go. Вова Марунин, Clatch, МТС
lamodatech
0
2.1k
ソフトウェアテスト 最初の一歩 〜テスト設計技法をワークで体験しながら学ぶ〜 #JaSSTTokyo / SoftwareTestingFirstStep
nihonbuson
PRO
2
160
製造業向けIoTソリューション提案資料.pdf
haruki_uiru
0
270
Azure × MCP 入門
ry0y4n
8
1.8k
Sleep-time Compute: LLM推論コスト削減のための事前推論
sergicalsix
1
130
雑に疎通確認だけしたい...せや!CloudShell使ったろ!
alchemy1115
0
230
技術選定を突き詰める 懇親会LT
okaru
2
690
使えるデータ基盤を作る技術選定の秘訣 / selecting-the-right-data-technology
pei0804
9
1.4k
MagicPod MCPサーバー開発の裏側とAIエージェント活用の展望
magicpod
0
240
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.7k
Building Adaptive Systems
keathley
41
2.5k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
Typedesign – Prime Four
hannesfritz
41
2.6k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
52
2.5k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
A Tale of Four Properties
chriscoyier
159
23k
Practical Orchestrator
shlominoach
187
11k
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
Designing for humans not robots
tammielis
253
25k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
Transcript
Boxes and whiskers — generated by Stable Diffusion XL v1.0
2024 12 R ( ) (2) — (WBS) 2024 12 R ( ) (2) — — 2024-11 – p.1/14
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 12 R ( ) (2) — — 2024-11
– p.2/14
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 • 11 R ( ) (1) — • 12 R ( ) (2) — • 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/16 ) / (2 ) OK / 2024 12 R ( ) (2) — — 2024-11 – p.3/14
N(µ, σ2) ρ 2 ( : ˆ y = a
+ b1 x1 + b2 x2 + e ) 2024 12 R ( ) (2) — — 2024-11 – p.4/14
N(µ, σ2) “rnorm()” set.seed(173205) # # N(50, 10^2) 100 x
<- rnorm(n=100, mean=50, sd=10) # x # hist(x) mean(x) sd(x) 2024 12 R ( ) (2) — — 2024-11 – p.5/14
Histogram of x x Frequency 10 20 30 40 50
60 70 80 0 5 10 15 20 25 30 35 mean(x) : 50.06994 sd(x) : 10.30096 2024 12 R ( ) (2) — — 2024-11 – p.6/14
ρ 2 (1/2) MASS “mvrnorm()” “ .R” # r =
0.9 # t = 3.7 # r = 15.2 # t = 7.5 # = -0.5 # <- matrix(c( r^2, * t * r, * r * t, t^2 ), nrow=2) 2024 12 R ( ) (2) — — 2024-11 – p.7/14
“mvrnorm()” = S xx S xy S xy S yy
= S xx rS x S y rS x S y S yy ( r = S xy S x S y ) 2 x, y x, y, z, . . . 2024 12 R ( ) (2) — — 2024-11 – p.8/14
ρ 2 (2/2) MASS “mvrnorm()” “ .R” # set.seed(28284) <-
mvrnorm(n=100, mu=c( r, t), Sigma= ) <- pmin(pmax( [,1], 13.0), 19.9) <- pmin(pmax( [,2], 0.0), 20.0) “ [,1]” “ [,2]” plot 2024 12 R ( ) (2) — — 2024-11 – p.9/14
0 5 10 15 20 13 14 15 16 17
18 ㈇ࡢ┦㛵ࡢ 㐌ᙜࡓࡾࡢㄢእ㐠ື㛫 100m㉮ࡢࢱ࣒ (⛊) r : -0.5932345 ( ) -0.5884094 ( ) 2024 12 R ( ) (2) — — 2024-11 – p.10/14
(1/2) “ .R” n <- 50 # a <- 49.4
# ( (158cm ) ) # r_father <- 0.306 mean_father <- 168.78 sd_father <- 3.2 # r_mother <- 0.37 mean_mother <- 155.32 sd_mother <- 2.45 2024 12 R ( ) (2) — — 2024-11 – p.11/14
(2/2) “ .R” <- round(rnorm(n=n, mean=mean_father, sd=sd_father), digits=1) <- round(rnorm(n=n,
mean=mean_mother, sd=sd_mother), digits=1) e <- rnorm(n=n, mean=0, sd=2.8) # <- round(a + r_father * + r_mother * + e, digits=1) 1 “round()” plot 2024 12 R ( ) (2) — — 2024-11 – p.12/14
ፉ㌟㛗 160 165 170 175 152 156 160 164 160
165 170 175 ∗㌟㛗 152 156 160 164 150 154 158 150 154 158 ẕ㌟㛗 : 34.2484 : 0.3545 : 0.4137 : 0.2831 2024 12 R ( ) (2) — — 2024-11 – p.13/14
2024 12 R ( ) (2) — — 2024-11 –
p.14/14