Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた分析(補講) (2) — 人工データの生成 / Analysis using R ...
Search
Kenji Saito
PRO
November 30, 2024
Technology
0
39
R を用いた分析(補講) (2) — 人工データの生成 / Analysis using R (supplementary) (2) - Generating artificial data
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬のオンデマンド教材 第12回で使用したスライドです。
Kenji Saito
PRO
November 30, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
ゼミ紹介 : 公共の利益のためのデジタルトランスフォーメーション / Zemi Introduction : Digital Transformation for Public Good
ks91
PRO
0
29
逆襲のインクルーシブ社会 / An Inclusive Society Strikes Back
ks91
PRO
0
15
続・インクルーシブな社会へ / Continuing Towards an Inclusive Society
ks91
PRO
0
26
AGI (人工一般知能) と創る新しく奇妙な社会 / New and Stranger Society built with AGI
ks91
PRO
0
75
回帰分析/大規模言語モデルと統計 / Regression Analysis, Large Language Models and Statistics
ks91
PRO
0
81
多重比較/相関分析 / Multiple Comparison and Correlation Analysis
ks91
PRO
0
74
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 3
ks91
PRO
0
74
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 2
ks91
PRO
0
59
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 1
ks91
PRO
1
83
Other Decks in Technology
See All in Technology
Multitenant 23ai の全貌 - 機能・設計・実装・運用からマイクロサービスまで
oracle4engineer
PRO
2
110
銀行でDevOpsを進める理由と実践例 / 20250317 Masaki Iwama
shift_evolve
1
100
年末調整プロダクトの内部品質改善活動について
kaomi_wombat
0
200
Engineering Managementのグローバルトレンド #emoasis / Engineering Management Global Trend
kyonmm
PRO
6
980
Vision Language Modelを活用した メルカリの類似画像レコメンドの性能改善
yadayuki
9
1.2k
Tirez profit de Messenger pour améliorer votre architecture
tucksaun
1
120
RAGの基礎から実践運用まで:AWS BedrockとLangfuseで実現する構築・監視・評価
sonoda_mj
0
420
チームの性質によって変わる ADR との向き合い方と、生成 AI 時代のこれから / How to deal with ADR depends on the characteristics of the team
mh4gf
4
320
数百台のオンプレミスのサーバーをEKSに移行した話
yukiteraoka
0
640
ペアプログラミングにQAが加わった!職能を超えたモブプログラミングの事例と学び
tonionagauzzi
1
130
LINE API Deep Dive Q1 2025: Unlocking New Possibilities
linedevth
1
160
Amazon Q Developer 他⽣成AIと⽐較してみた
takano0131
1
120
Featured
See All Featured
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
Building a Modern Day E-commerce SEO Strategy
aleyda
39
7.2k
The Pragmatic Product Professional
lauravandoore
33
6.5k
Speed Design
sergeychernyshev
28
860
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
30
1.1k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
16
1.1k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
How to train your dragon (web standard)
notwaldorf
91
5.9k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Transcript
Boxes and whiskers — generated by Stable Diffusion XL v1.0
2024 12 R ( ) (2) — (WBS) 2024 12 R ( ) (2) — — 2024-11 – p.1/14
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 12 R ( ) (2) — — 2024-11
– p.2/14
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 • 11 R ( ) (1) — • 12 R ( ) (2) — • 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/16 ) / (2 ) OK / 2024 12 R ( ) (2) — — 2024-11 – p.3/14
N(µ, σ2) ρ 2 ( : ˆ y = a
+ b1 x1 + b2 x2 + e ) 2024 12 R ( ) (2) — — 2024-11 – p.4/14
N(µ, σ2) “rnorm()” set.seed(173205) # # N(50, 10^2) 100 x
<- rnorm(n=100, mean=50, sd=10) # x # hist(x) mean(x) sd(x) 2024 12 R ( ) (2) — — 2024-11 – p.5/14
Histogram of x x Frequency 10 20 30 40 50
60 70 80 0 5 10 15 20 25 30 35 mean(x) : 50.06994 sd(x) : 10.30096 2024 12 R ( ) (2) — — 2024-11 – p.6/14
ρ 2 (1/2) MASS “mvrnorm()” “ .R” # r =
0.9 # t = 3.7 # r = 15.2 # t = 7.5 # = -0.5 # <- matrix(c( r^2, * t * r, * r * t, t^2 ), nrow=2) 2024 12 R ( ) (2) — — 2024-11 – p.7/14
“mvrnorm()” = S xx S xy S xy S yy
= S xx rS x S y rS x S y S yy ( r = S xy S x S y ) 2 x, y x, y, z, . . . 2024 12 R ( ) (2) — — 2024-11 – p.8/14
ρ 2 (2/2) MASS “mvrnorm()” “ .R” # set.seed(28284) <-
mvrnorm(n=100, mu=c( r, t), Sigma= ) <- pmin(pmax( [,1], 13.0), 19.9) <- pmin(pmax( [,2], 0.0), 20.0) “ [,1]” “ [,2]” plot 2024 12 R ( ) (2) — — 2024-11 – p.9/14
0 5 10 15 20 13 14 15 16 17
18 ㈇ࡢ┦㛵ࡢ 㐌ᙜࡓࡾࡢㄢእ㐠ື㛫 100m㉮ࡢࢱ࣒ (⛊) r : -0.5932345 ( ) -0.5884094 ( ) 2024 12 R ( ) (2) — — 2024-11 – p.10/14
(1/2) “ .R” n <- 50 # a <- 49.4
# ( (158cm ) ) # r_father <- 0.306 mean_father <- 168.78 sd_father <- 3.2 # r_mother <- 0.37 mean_mother <- 155.32 sd_mother <- 2.45 2024 12 R ( ) (2) — — 2024-11 – p.11/14
(2/2) “ .R” <- round(rnorm(n=n, mean=mean_father, sd=sd_father), digits=1) <- round(rnorm(n=n,
mean=mean_mother, sd=sd_mother), digits=1) e <- rnorm(n=n, mean=0, sd=2.8) # <- round(a + r_father * + r_mother * + e, digits=1) 1 “round()” plot 2024 12 R ( ) (2) — — 2024-11 – p.12/14
ፉ㌟㛗 160 165 170 175 152 156 160 164 160
165 170 175 ∗㌟㛗 152 156 160 164 150 154 158 150 154 158 ẕ㌟㛗 : 34.2484 : 0.3545 : 0.4137 : 0.2831 2024 12 R ( ) (2) — — 2024-11 – p.13/14
2024 12 R ( ) (2) — — 2024-11 –
p.14/14