Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた分析(補講) (2) — 人工データの生成 / Analysis using R ...
Search
Kenji Saito
PRO
November 30, 2024
Technology
0
39
R を用いた分析(補講) (2) — 人工データの生成 / Analysis using R (supplementary) (2) - Generating artificial data
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬のオンデマンド教材 第12回で使用したスライドです。
Kenji Saito
PRO
November 30, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
ゼミ紹介 : 公共の利益のためのデジタルトランスフォーメーション / Zemi Introduction : Digital Transformation for Public Good
ks91
PRO
0
31
逆襲のインクルーシブ社会 / An Inclusive Society Strikes Back
ks91
PRO
0
26
続・インクルーシブな社会へ / Continuing Towards an Inclusive Society
ks91
PRO
0
29
AGI (人工一般知能) と創る新しく奇妙な社会 / New and Stranger Society built with AGI
ks91
PRO
0
88
回帰分析/大規模言語モデルと統計 / Regression Analysis, Large Language Models and Statistics
ks91
PRO
0
86
多重比較/相関分析 / Multiple Comparison and Correlation Analysis
ks91
PRO
0
77
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 3
ks91
PRO
0
74
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 2
ks91
PRO
0
59
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 1
ks91
PRO
1
83
Other Decks in Technology
See All in Technology
技術好きなエンジニアが _リーダーへの進化_ によって得たものと失ったもの / The Gains and Losses of a Tech-Enthusiast Engineer’s “Evolution into Leadership”
kaminashi
0
200
Riverpod & Riverpod Generatorを利用して状態管理部分の処理を書き換えてみる簡単な事例紹介
fumiyasac0921
0
110
Go製のマイグレーションツールの git-schemalex の紹介と運用方法
shinnosuke_kishida
1
410
Cloud Native PG 使ってみて気づいたことと最新機能の紹介 - 第52回PostgreSQLアンカンファレンス
seinoyu
2
220
RAGの基礎から実践運用まで:AWS BedrockとLangfuseで実現する構築・監視・評価
sonoda_mj
0
440
数百台のオンプレミスのサーバーをEKSに移行した話
yukiteraoka
0
680
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
300
Road to SRE NEXT@仙台 IVRyの組織の形とSLO運用の現状
abnoumaru
0
390
ペアーズにおけるData Catalog導入の取り組み
hisamouna
0
130
お問い合わせ対応の改善取り組みとその進め方
masartz
1
370
Amazon EKS Auto ModeでKubernetesの運用をシンプルにする
sshota0809
0
110
Security response for open source ecosystems
frasertweedale
0
100
Featured
See All Featured
Git: the NoSQL Database
bkeepers
PRO
429
65k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
46
2.4k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
Designing Experiences People Love
moore
141
23k
The Language of Interfaces
destraynor
157
24k
Docker and Python
trallard
44
3.3k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
320
The Cost Of JavaScript in 2023
addyosmani
48
7.6k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
28
2k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Facilitating Awesome Meetings
lara
53
6.3k
Transcript
Boxes and whiskers — generated by Stable Diffusion XL v1.0
2024 12 R ( ) (2) — (WBS) 2024 12 R ( ) (2) — — 2024-11 – p.1/14
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 12 R ( ) (2) — — 2024-11
– p.2/14
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 • 11 R ( ) (1) — • 12 R ( ) (2) — • 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/16 ) / (2 ) OK / 2024 12 R ( ) (2) — — 2024-11 – p.3/14
N(µ, σ2) ρ 2 ( : ˆ y = a
+ b1 x1 + b2 x2 + e ) 2024 12 R ( ) (2) — — 2024-11 – p.4/14
N(µ, σ2) “rnorm()” set.seed(173205) # # N(50, 10^2) 100 x
<- rnorm(n=100, mean=50, sd=10) # x # hist(x) mean(x) sd(x) 2024 12 R ( ) (2) — — 2024-11 – p.5/14
Histogram of x x Frequency 10 20 30 40 50
60 70 80 0 5 10 15 20 25 30 35 mean(x) : 50.06994 sd(x) : 10.30096 2024 12 R ( ) (2) — — 2024-11 – p.6/14
ρ 2 (1/2) MASS “mvrnorm()” “ .R” # r =
0.9 # t = 3.7 # r = 15.2 # t = 7.5 # = -0.5 # <- matrix(c( r^2, * t * r, * r * t, t^2 ), nrow=2) 2024 12 R ( ) (2) — — 2024-11 – p.7/14
“mvrnorm()” = S xx S xy S xy S yy
= S xx rS x S y rS x S y S yy ( r = S xy S x S y ) 2 x, y x, y, z, . . . 2024 12 R ( ) (2) — — 2024-11 – p.8/14
ρ 2 (2/2) MASS “mvrnorm()” “ .R” # set.seed(28284) <-
mvrnorm(n=100, mu=c( r, t), Sigma= ) <- pmin(pmax( [,1], 13.0), 19.9) <- pmin(pmax( [,2], 0.0), 20.0) “ [,1]” “ [,2]” plot 2024 12 R ( ) (2) — — 2024-11 – p.9/14
0 5 10 15 20 13 14 15 16 17
18 ㈇ࡢ┦㛵ࡢ 㐌ᙜࡓࡾࡢㄢእ㐠ື㛫 100m㉮ࡢࢱ࣒ (⛊) r : -0.5932345 ( ) -0.5884094 ( ) 2024 12 R ( ) (2) — — 2024-11 – p.10/14
(1/2) “ .R” n <- 50 # a <- 49.4
# ( (158cm ) ) # r_father <- 0.306 mean_father <- 168.78 sd_father <- 3.2 # r_mother <- 0.37 mean_mother <- 155.32 sd_mother <- 2.45 2024 12 R ( ) (2) — — 2024-11 – p.11/14
(2/2) “ .R” <- round(rnorm(n=n, mean=mean_father, sd=sd_father), digits=1) <- round(rnorm(n=n,
mean=mean_mother, sd=sd_mother), digits=1) e <- rnorm(n=n, mean=0, sd=2.8) # <- round(a + r_father * + r_mother * + e, digits=1) 1 “round()” plot 2024 12 R ( ) (2) — — 2024-11 – p.12/14
ፉ㌟㛗 160 165 170 175 152 156 160 164 160
165 170 175 ∗㌟㛗 152 156 160 164 150 154 158 150 154 158 ẕ㌟㛗 : 34.2484 : 0.3545 : 0.4137 : 0.2831 2024 12 R ( ) (2) — — 2024-11 – p.13/14
2024 12 R ( ) (2) — — 2024-11 –
p.14/14