Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた分析(補講) (2) — 人工データの生成 / Analysis using R ...
Search
Kenji Saito
PRO
November 30, 2024
Technology
0
10
R を用いた分析(補講) (2) — 人工データの生成 / Analysis using R (supplementary) (2) - Generating artificial data
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬のオンデマンド教材 第12回で使用したスライドです。
Kenji Saito
PRO
November 30, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
P 値と有意差/分散分析 / P-value, Significant Difference and Analysis of Variance
ks91
PRO
0
17
関連2群のt検定/独立2群のt検定 / Related 2-group t-test and independent 2-group t-test
ks91
PRO
0
47
A Guide to Paper Writing Support with Generative AI - A Joint Zemi
ks91
PRO
0
9
正規分布と簡単な統計理論/t分布と信頼区間 / Normal distribution, simple statistical theory, t-distribution and confidence intervals
ks91
PRO
0
42
じわじわ迫ってきている自動化社会 (その先にメタ・ネイチャー) / The Slowly Approaching Automated Society (and its beyond: Meta-Nature)
ks91
PRO
0
6
起こりうる誤った推論/平均・分散・標準偏差・自由度 / Possible false inferences, means, variances, standard deviations and degrees of freedom
ks91
PRO
0
57
LaTeX と Overleaf によるショートペーパー作成 / Short paper writing with LaTeX and Overleaf
ks91
PRO
0
23
R を用いた検定(補講) (1) — Welch 検定 / Tests using R (supplementary) (1) - Welch test
ks91
PRO
0
12
R を用いた検定(補講) (2) — カイ二乗検定 / Tests using R (supplementary) (2) - Chi-squared test
ks91
PRO
0
13
Other Decks in Technology
See All in Technology
スケールし続ける事業とサービスを支える組織とアーキテクチャの生き残り戦略 / The survival strategy for Money Forward’s engineering.
moneyforward
0
140
Oracle Cloudの生成AIサービスって実際どこまで使えるの? エンジニア目線で試してみた
minorun365
PRO
5
320
普通のエンジニアがLaravelコアチームメンバーになるまで
avosalmon
0
610
怖くない!ゼロから始めるPHPソースコードコンパイル入門
colopl
0
200
サービスでLLMを採用したばっかりに振り回され続けたこの一年のあれやこれや
segavvy
2
650
DUSt3R, MASt3R, MASt3R-SfM にみる3D基盤モデル
spatial_ai_network
3
370
Fanstaの1年を大解剖! 一人SREはどこまでできるのか!?
syossan27
2
350
20241218_今年はSLI/SLOの導入を頑張ってました!
zepprix
0
220
PHPerのための計算量入門/Complexity101 for PHPer
hanhan1978
6
1.3k
TSKaigi 2024 の登壇から広がったコミュニティ活動について
tsukuha
0
170
[Oracle TechNight#85] Oracle Autonomous Databaseを使ったAI活用入門
oracle4engineer
PRO
1
170
20240513 - 框裡框外_文學院學生如何在AI世代安身立命 @ 淡江大學
dpys
0
460
Featured
See All Featured
Product Roadmaps are Hard
iamctodd
PRO
50
11k
Building a Scalable Design System with Sketch
lauravandoore
460
33k
Adopting Sorbet at Scale
ufuk
74
9.1k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.5k
How to train your dragon (web standard)
notwaldorf
88
5.8k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
530
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
KATA
mclloyd
29
14k
Bash Introduction
62gerente
609
210k
Side Projects
sachag
452
42k
Typedesign – Prime Four
hannesfritz
40
2.4k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
3
310
Transcript
Boxes and whiskers — generated by Stable Diffusion XL v1.0
2024 12 R ( ) (2) — (WBS) 2024 12 R ( ) (2) — — 2024-11 – p.1/14
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 12 R ( ) (2) — — 2024-11
– p.2/14
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 • 11 R ( ) (1) — • 12 R ( ) (2) — • 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/16 ) / (2 ) OK / 2024 12 R ( ) (2) — — 2024-11 – p.3/14
N(µ, σ2) ρ 2 ( : ˆ y = a
+ b1 x1 + b2 x2 + e ) 2024 12 R ( ) (2) — — 2024-11 – p.4/14
N(µ, σ2) “rnorm()” set.seed(173205) # # N(50, 10^2) 100 x
<- rnorm(n=100, mean=50, sd=10) # x # hist(x) mean(x) sd(x) 2024 12 R ( ) (2) — — 2024-11 – p.5/14
Histogram of x x Frequency 10 20 30 40 50
60 70 80 0 5 10 15 20 25 30 35 mean(x) : 50.06994 sd(x) : 10.30096 2024 12 R ( ) (2) — — 2024-11 – p.6/14
ρ 2 (1/2) MASS “mvrnorm()” “ .R” # r =
0.9 # t = 3.7 # r = 15.2 # t = 7.5 # = -0.5 # <- matrix(c( r^2, * t * r, * r * t, t^2 ), nrow=2) 2024 12 R ( ) (2) — — 2024-11 – p.7/14
“mvrnorm()” = S xx S xy S xy S yy
= S xx rS x S y rS x S y S yy ( r = S xy S x S y ) 2 x, y x, y, z, . . . 2024 12 R ( ) (2) — — 2024-11 – p.8/14
ρ 2 (2/2) MASS “mvrnorm()” “ .R” # set.seed(28284) <-
mvrnorm(n=100, mu=c( r, t), Sigma= ) <- pmin(pmax( [,1], 13.0), 19.9) <- pmin(pmax( [,2], 0.0), 20.0) “ [,1]” “ [,2]” plot 2024 12 R ( ) (2) — — 2024-11 – p.9/14
0 5 10 15 20 13 14 15 16 17
18 ㈇ࡢ┦㛵ࡢ 㐌ᙜࡓࡾࡢㄢእ㐠ື㛫 100m㉮ࡢࢱ࣒ (⛊) r : -0.5932345 ( ) -0.5884094 ( ) 2024 12 R ( ) (2) — — 2024-11 – p.10/14
(1/2) “ .R” n <- 50 # a <- 49.4
# ( (158cm ) ) # r_father <- 0.306 mean_father <- 168.78 sd_father <- 3.2 # r_mother <- 0.37 mean_mother <- 155.32 sd_mother <- 2.45 2024 12 R ( ) (2) — — 2024-11 – p.11/14
(2/2) “ .R” <- round(rnorm(n=n, mean=mean_father, sd=sd_father), digits=1) <- round(rnorm(n=n,
mean=mean_mother, sd=sd_mother), digits=1) e <- rnorm(n=n, mean=0, sd=2.8) # <- round(a + r_father * + r_mother * + e, digits=1) 1 “round()” plot 2024 12 R ( ) (2) — — 2024-11 – p.12/14
ፉ㌟㛗 160 165 170 175 152 156 160 164 160
165 170 175 ∗㌟㛗 152 156 160 164 150 154 158 150 154 158 ẕ㌟㛗 : 34.2484 : 0.3545 : 0.4137 : 0.2831 2024 12 R ( ) (2) — — 2024-11 – p.13/14
2024 12 R ( ) (2) — — 2024-11 –
p.14/14