Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
さまざまなグラフ描画(1) / Various Chart Drawing 1
Search
Kenji Saito
PRO
December 11, 2023
Business
0
64
さまざまなグラフ描画(1) / Various Chart Drawing 1
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第7回で使用したスライドです。
Kenji Saito
PRO
December 11, 2023
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
P 値と有意差/分散分析 / P-value, Significant Difference and Analysis of Variance
ks91
PRO
0
29
関連2群のt検定/独立2群のt検定 / Related 2-group t-test and independent 2-group t-test
ks91
PRO
0
51
A Guide to Paper Writing Support with Generative AI - A Joint Zemi
ks91
PRO
0
9
正規分布と簡単な統計理論/t分布と信頼区間 / Normal distribution, simple statistical theory, t-distribution and confidence intervals
ks91
PRO
0
43
じわじわ迫ってきている自動化社会 (その先にメタ・ネイチャー) / The Slowly Approaching Automated Society (and its beyond: Meta-Nature)
ks91
PRO
0
6
起こりうる誤った推論/平均・分散・標準偏差・自由度 / Possible false inferences, means, variances, standard deviations and degrees of freedom
ks91
PRO
0
59
LaTeX と Overleaf によるショートペーパー作成 / Short paper writing with LaTeX and Overleaf
ks91
PRO
0
23
R を用いた検定(補講) (1) — Welch 検定 / Tests using R (supplementary) (1) - Welch test
ks91
PRO
0
12
R を用いた検定(補講) (2) — カイ二乗検定 / Tests using R (supplementary) (2) - Chi-squared test
ks91
PRO
0
13
Other Decks in Business
See All in Business
ログラス会社紹介資料 / Loglass Company Deck
loglass2019
7
250k
comorebi_cultuerdeck_2025
comorebi_tokyo
0
210
ストーリーテリングでチームに”熱"を伝える🔥
inagakikay
1
11k
行動なしに良い仮説思考はできない
tumada
PRO
8
2.1k
CompanyDeck_v6.pdf
xid
3
17k
freee + Product Design FY24 Q2
freee
4
9.6k
ハードウェア企業から700万ユーザーを抱えるB2B SaaSへ:PMのキャリアシフトで見えた共通点とギャップ
kubell_hr
0
4.2k
WHITE CROSS inc. - Recruiting deck
yutanagahata
2
9.1k
VISASQ: ABOUT US
eikohashiba
15
470k
GA technologies Co.,Ltd. Corporate Story
gatechnologies
2
940
P2B Haus法人サポータープランのご提案
sotarok
2
1.1k
202412_CultureDeck
todoker
1
210
Featured
See All Featured
jQuery: Nuts, Bolts and Bling
dougneiner
62
7.6k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.2k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
Raft: Consensus for Rubyists
vanstee
137
6.7k
How GitHub (no longer) Works
holman
312
140k
Imperfection Machines: The Place of Print at Facebook
scottboms
266
13k
The Pragmatic Product Professional
lauravandoore
32
6.3k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.3k
The Language of Interfaces
destraynor
155
24k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
1
140
Transcript
generated by Stable Diffusion XL v1.0 2023 7 (1) (WBS)
2023 7 (1) — 2023-12 – p.1/18
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 7 (1) — 2023-12 – p.2/18
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 7 (1) — 2023-12 – p.3/18
( ) ( ) 2023 7 (1) — 2023-12 –
p.4/18
(line chart) x y cda-demo “ -1.R” Git 1 2023
7 (1) — 2023-12 – p.5/18
“ .txt” 1 1 <- read.table(" .txt", header=T) A 4
plot( 1$ , 1$A , type="o", pch=0, ylim=c(40, 80), xaxp=c(1,4,3), ylab=" ", xlab=" ", main="A ") ‘type="o"’ ‘pch=0’ ‘xaxp=c(1,4,3)’ x 1 4 3 1.5 2023 7 (1) — 2023-12 – p.6/18
1 2 3 4 40 50 60 70 80 A⤌ࡢᖹᆒⅬࡢ᥎⛣
ᶍヨᅇ ᖹᆒⅬ 2023 7 (1) — 2023-12 – p.7/18
plot ( ) type ( ) : "p" ( )
"l" ( ) "o" ( ) "h" ( ) cf. https://r-charts.com/base-r/line-types/ (Line plot types) pch (plotting character)( ) : 0 ( ) 1 (◦) 2 (△) 3 (+) 4 (×) cf. https://r-charts.com/base-r/pch-symbols/ lty (line type)( ) : 1 ( ) 2 ( ) 3 ( ) cf. https://r-charts.com/base-r/line-types/ (Line types) lwd (line width)( ) 2023 7 (1) — 2023-12 – p.8/18
(1/2) A B plot( 1$ , 1$A , type="o", lty=1,
pch=1, col=1, ylim=c(40, 80), xaxp=c(1,4,3), ylab=" ", xlab=" ", main="A,B,C,D ") par(new=T) plot( 1$ , 1$B , type="o", lty=2, pch=2, col=2, ylim=c(40, 80), xaxp=c(1,4,3), axes=F, ann=F) ‘par(new=T)’ ( ) B plot ‘axes=F’ ‘ann=F’ ‘ylim’ ‘xaxp’ ‘lty’ ‘pch’ ‘col’ 2023 7 (1) — 2023-12 – p.9/18
(2/2) C D par(new=T) plot( 1$ , 1$C , type="o",
lty=3, pch=3, col=3, ylim=c(40, 80), xaxp=c(1,4,3), axes=F, ann=F) par(new=T) plot( 1$ , 1$D , type="o", lty=4, pch=4, col=4, ylim=c(40, 80), xaxp=c(1,4,3), axes=F, ann=F) legend("topleft", legend=names( 1)[2:5], lty=1:4, pch=1:4, col=1:4) ‘legend(. . .)’ ( top-left) 2023 7 (1) — 2023-12 – p.10/18
1 2 3 4 40 50 60 70 80 A,B,C,D⤌ࡢᖹᆒⅬࡢ᥎⛣
ᶍヨᅇ ᖹᆒⅬ A⤌ B⤌ C⤌ D⤌ 2023 7 (1) — 2023-12 – p.11/18
(radar chart) n n 0 n n 2023 7 (1)
— 2023-12 – p.12/18
(1/2) AI(GPT-4) install.packages("fmsb") library("fmsb") 2 <- read.table(" .txt", header=T) maxmin
<- data.frame( =c(7,0), =c(7,0), =c(7,0), =c(7,0), =c(7,0)) fmsb ( ) maxmin 2023 7 (1) — 2023-12 – p.13/18
(2/2) data <- rbind(maxmin, 2) radarchart(data, seg=7, centerzero=T, title="GPT-4 ")
legend("topleft", legend=c(" ", " "), lty=1:2, pch=16, col=c("black", "red")) ‘rbind(. . .)’ ‘radarchart(. . .)’ 2 3 ( 1∼ ) ‘seg=7’ 7 ‘centerzero=T’ 0 2023 7 (1) — 2023-12 – p.14/18
GPT-4 ࡼࡿே㛫ࡢᛶ᱁ࡢᨃែ ༠ㄪᛶ ㄔᐇᛶ እྥᛶ ᚰ㓄ᛶ 㛤ᨺᛶ ᨃែࡢᑐ㇟ ᨃែࡢ⤖ᯝ 2023
7 (1) — 2023-12 – p.15/18
2 barplot(as.matrix( 2), beside=T, ylim=c(0, 7), yaxp=c(1,7,6), col=c("black", "red"), density=c(25,
50), legend.text=c(" ", " "), args.legend=list(x="topleft"), main="GPT-4 ") ‘as.matrix(. . .)’ ( ) ‘args.legend’ 2023 7 (1) — 2023-12 – p.16/18
༠ㄪᛶ እྥᛶ 㛤ᨺᛶ ᨃែࡢᑐ㇟ ᨃែࡢ⤖ᯝ GPT-4 ࡼࡿே㛫ࡢᛶ᱁ࡢᨃែ 1 2 3
4 5 6 7 ㄔᐇᛶ ᚰ㓄ᛶ 2023 7 (1) — 2023-12 – p.17/18
2023 7 (1) — 2023-12 – p.18/18