Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
目つぶり検証機作成期 ~サーバーレス初心者の手始め~
Search
Kana Kitagawa
December 14, 2019
Technology
0
1.7k
目つぶり検証機作成期 ~サーバーレス初心者の手始め~
Serverless Days FukuokaでのLT登壇資料です。
Kana Kitagawa
December 14, 2019
Tweet
Share
More Decks by Kana Kitagawa
See All by Kana Kitagawa
ユーザーと一緒に育てる! 1年半の実践で得たコミュニティ成長のヒント
ktkn1129
0
56
Grow Together with Users! Community Growth Lessons from 1.5 Years of Practice
ktkn1129
0
27
#CMC_Meetup 真の大切さが伝わりにくい領域にチャレンジするスタートアップだからこそコミュニティが活きてくる ー顧客理解/顧客育成/顧客創造 全てに繋がるprimeNumberのコミュニティ活用とは
ktkn1129
0
67
#devreljp コミュニティネイティブな私のキャリアの築き方
ktkn1129
1
310
#CMC_Meetup コミュニティの主体がCSからマーケに変わって気づいた良さの違い
ktkn1129
0
660
コミュニティへ巻き込む人の見つけ方 ~ ヒントはインターネット上にあり? ~
ktkn1129
0
1.4k
絶対コミュニティに入った方が人生も楽しくなるのを初参加の人に伝えたい
ktkn1129
0
960
データ分析初心者が離脱しないためのModeのサポートの手厚さについて
ktkn1129
0
970
みんなでOne Teamになって良いプロダクトを作るためのチームコミュニケーションについて
ktkn1129
0
900
Other Decks in Technology
See All in Technology
Javaコミュニティの歩き方 ~参加から貢献まで、すべて教えます~
tabatad
0
140
ある編集者のこれまでとこれから —— 開発者コミュニティと歩んだ四半世紀
inao
5
3.5k
やり方は一つだけじゃない、正解だけを目指さず寄り道やその先まで自分流に楽しむ趣味プログラミングの探求 2025-11-15 YAPC::Fukuoka
sugyan
3
900
Greenは本当にGreenか? - B/GデプロイとAPI自動テストで安心デプロイ
kaz29
0
100
身近なCSVを活用する!AWSのデータ分析基盤アーキテクチャ
koosun
0
2.1k
Capitole du Libre 2025 - Keynote - Cloud du Coeur
ju_hnny5
0
120
JJUG CCC 2025 Fall バッチ性能!!劇的ビフォーアフター
hayashiyuu1
1
380
ステートレスなLLMでステートフルなAI agentを作る - YAPC::Fukuoka 2025
gfx
8
1.4k
国産クラウドを支える設計とチームの変遷 “技術・組織・ミッション”
kazeburo
4
5.5k
PostgreSQL で列データ”ファイル”を利用する ~Arrow/Parquet を統合したデータベースの作成~
kaigai
0
140
ABEJA FIRST GUIDE for Software Engineers
abeja
0
3.2k
Moto: Latent Motion Token as the Bridging Language for Learning Robot Manipulation from Videos
peisuke
0
160
Featured
See All Featured
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Raft: Consensus for Rubyists
vanstee
140
7.2k
It's Worth the Effort
3n
187
28k
Navigating Team Friction
lara
190
15k
Building Adaptive Systems
keathley
44
2.8k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
24
1.6k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Transcript
ͭͿ Γ ݕ ূ ػ ࡞ ظ ~
α ʔόʔ Ϩε ॳ ৺ ऀ ͷ ख ࢝ Ί ~ K A N A K I TA G A WA
A G E N D A • ࣗݾհ • ࠓճ
Γ͔ͨͬͨ͜ͱ • ࣮ࡍʹߦͬͨ͜ͱ • ΑΓਖ਼֬ʹ ͔ͨͬͨ͠ • ࠓճࢲ͕ݴ͍͔ͨͬͨ ͜ͱ
K A N A K I TA G A WA
• “͍͕ͨʔ”(͵Μ) ͱݺΕͯ·͢ɻ #MakikomiTiger • ؔେֶ 4ੜ (ઐ߈:ϝσΟΞΞʔτ) • དྷ4݄͔Β౦ژͰ ಇ͖࢝Ί·͢ʂ • ࣸਅͷপͷຽ
F I L M P H O T O G
R A P H Y
D I G I TA L P H O T
O G R A P H Y 20202݄8.9ʹେࡕͰೋਓͰࣸਅలΛ͠·͢ɻ
B E F O R E A F T E
R Shooting & Retouch ΞΠίϯࡱӨͷ͝ґཔҾ͖ड͚·͢ͷͰ͓ؾܰʹɻ
ࠓ ճ Γ ͨ ͔ ͬ ͨ ͜
ͱ
None
ͭͿ Γ ݕ ূ ࡞ ظ ~ α
ʔόʔ Ϩε ॳ ৺ ऀ ͷ ख ࢝ Ί ~ K A N A K I TA G A WA
લ ճ ฉ ͍ͯ͘ ͩ ͞ ͬ ͨ ํ ʂ
P H O T O S × S E R
V E R L E S S … ?
ͦ ͷ લ ʹ ɾ ɾ ɾ
ࢲ ͷ ࣸ ਅ ͷ Ϩ λ ο ν ͷ
ख ॱ 1.ࣸਅΛLightroomܦ༝ͰϩʔΧϧʹऔΓࠐΉɻ 2.Λᛉ͍ͬͯΔࣸਅɺϐϯϙέͷࣸਅҎ֎Λ ϨʔςΟϯάɻ 3.ͦͷճͷϨλονͷϕʔεͱͳΔ৭ຯͰҰຕϨλονɻ 4.ϨʔςΟϯάͨ͠ͷʹઌ΄ͲͷઃఆΛϖʔετɺ֤ʑΛ ඍௐɻ͞Βʹબผ͠ɺϨʔςΟϯάɻ 5.બΜͩͷ͚ͩΛॻ͖ग़͠ɻ
ࢲ ͷ ࣸ ਅ ͷ Ϩ λ ο ν ͷ
ख ॱ 1.ࣸਅΛLightroomʹऔΓࠐΉɻ 2.Λᛉ͍ͬͯΔࣸਅɺϐϯϙέͷࣸਅҎ֎Λ ϨʔςΟϯάɻ 3.ࠓճͷϨλονͷϕʔεͱͳΔ৭ຯͰҰຕϨλονɻ 4.ϨʔςΟϯάͨ͠ͷʹઌ΄ͲͷઃఆΛϖʔετɺ֤ʑΛඍௐɻ͞Βʹબ ผ͠ɺϨʔςΟϯάɻ 5.બΜͩͷ͚ͩΛॻ͖ग़͠ɻ ҙ֎ͱ͕࣌ؒऔΒΕΔɻ
1 0 0 ຕ ΄ Ͳ ࡱ ͬͯ ࣮
ࡍ ͑Δ ͷ 5 0 ຕ ΄ Ͳ ɻ બ ผ ͢ Β ͯ͠ ͳ ͍ ͷ ͕ 2 0 0 0 ຕ ͘ Β ͍ ͋ Δ ɻ
Ϩ λ ο ν ྗ ͢ Δ ͨ
Ί ʹ अ ຐ ͳ ࣌ ؒ ল ͖ ͨ ͍ ɻ
Amazon Rekognition
A M A Z O N R E K O
G N I T I O N ͱ ʁ • ը૾ɺಈըͷੳπʔϧ • ΦϒδΣΫτɺγʔϯɺإͷݕग़ɺ ςΩετͷநग़ɺ༗໊ਓͷೝࣝɺը૾ ͷෆదͳίϯςϯπͷࣝผ͕Մೳ
إ ੳ
إ ੳ Ͱ ೝ ࣝ Ͱ ͖ Δ ͜
ͱ • স͍ͬͯΔ͔Ͳ͏͔ • ಏ͕։͍͍ͯΔ͔Ͳ͏͔ • ޱ͕։͍͍ͯΔ͔Ͳ͏͔ • ײ ͳͲɻ
إ ੳ Ͱ ೝ ࣝ Ͱ ͖ Δ ͜
ͱ • স͍ͬͯΔ͔Ͳ͏͔ •ಏ͕։͍͍ͯΔ͔Ͳ͏͔ • ޱ͕։͍͍ͯΔ͔Ͳ͏͔ • ײ ͳͲɻ
ཧ 1.Amazon S3ʹࡱӨͨ͠ૉࡐΛೖΕΔ 2.Amazon S3ͷը૾ͷΞοϓϩʔυΛτϦΨʔʹAmazon RekognitionΛୟ͘ 3.Amazon RekognitionͰإೝࣝ 4.ᛉΓ͍ͯ͠ͳ͍ը૾ΛϦετԽ
5.ϦετͰࢦఆ͞Ε͍ͯΔը૾ΛผͷS3όέοτʹҠಈ 6.ϦετͰදࣔ
࣮ ࡍ ʹ ߦ ͬ ͨ ͜ ͱ
Δ ͜ ͱ ͷ ཧ 1.إੳΛ௨͢લɺ௨ͨ͠ޙͷը૾ΛೖΕΔS3όέοτΛ ࡞͢Δ 2.Amazon
S3ʹΞοϓϩʔυ͞Εͨ͜ͱΛAWS LambdaͰ ݕ͢Δ 3.AWS Lambda͕Ξοϓϩʔυ͞ΕͨϑΝΠϧΛAmazon Rekognitionʹ͛ͯإੳॲཧΛߦ͏ 4.إੳͷ݁Ռɺͷۭ͍͍ͯΔը૾Λ௨ͨ͠ޙͷS3 όέοτʹίϐʔ
Serverless Framework
S E R V E R L E S S
F R A M E W O R K ͱ ʁ • Serverless ApplicationΛߏཧɺσϓϩΠ͢ΔͨΊ ͷπʔϧ • ίϛϡχςΟυϦϒϯͰ։ൃ͕ߦΘΕ͍ͯΔ • ຊޠϑΥʔϥϜ͋Γɻ https://github.com/serverless-japan/forum
https://qiita.com/horike37/items/b295a91908fcfd4033a2
Amazon Rekognition × AWS Lambda
P H O T O S × S E R
V E R L E S S … !
ੈ ͷ த ʹ ༷ ʑ ͳ σ ʔ
λ ܗ ࣜ ͕ ͋ Γ · ͢ɻ
A M A Z O N R E K O
G N I T I O N ͷ ҙ • ೝࣝͰ͖Δσʔλ JPGɺ PNGͷΈ
Ұ R A W σ ʔ λ Λ J
P G ʹ ॻ ͖ ͑ ͳ ͚ Ε إ ೝ ࣝ ͑ ͳ ͍ ɾ ɾ ɾ ʁ
࣍ ճ ͷ ՝ લճ·Ͱͷ͓
ࠓ ͕ ࣍ ճ ͩ ʂ
1.SDΧʔυ͔ΒσʔλΛίϐʔ ϑΥϧμʹ֨ೲ 2.ͦͷσʔλΛRAW͔ΒJPGʹม 3.มͨ͠ϑΝΠϧ͚ͩΛผϑΥϧμʹ Ҡಈ 4.S3ʹΞοϓϩʔυ
P Y T H O N L I B R
A RY • RAWPy • rawσʔλΛಡΈࠐΈ • ύϥϝʔλ͕ଟ͘ɺ͍͍ײ͡ʹউखʹϨλον͞ΕΔ • imageio • jpegʹม
None
ݩσʔλ rawpyޙͷσʔλ ᛉΓݕূ͞ΕͨΒ͍͍ͷͰؔͳ͍͚Ͳ ͬͱͬͯΈͨ͘ͳΔϥΠϒϥϦ
͍ Α ͍ Α … ᛉ Γ ݕ ূ
ػ ͷ ࡞
։ ൃ ڥ • Serverless Framework • Python 3.7
None
•handler.py •serverless.yml
S E R V E R L E S S
. Y M L Λ ฤ ू ͢ Δ
S E R V E R L E S S
. Y M L Λ ฤ ू ͢ Δ • AWS S3ͷΞΫηε • Amazon RekognitionͷΞΫηε • ϦιʔεʹAWS S3Λઃఆ͢Δ
H A N D L E R . P Y
Λ ฤ ू ͢ Δ
H A N D L E R . P Y
Λ ฤ ू ͢ Δ • S3όέοτͷதΛಡΈऔΔ • Amazon Rekognitionʹ͛Δ • ͕։͍͍ͯΔ͔Ͳ͏͔ผ͢Δ • EyesOpen=True • ։͍͍ͯΔͷ͚ͩɺผͷόέοτʹೖΕΔ
7 7 2 ຕ ͷ બ ผ ͕ 1 0
ʂ
Α Γ ਖ਼ ֬ ͳ ͷ Λ ࡞ Γ
ͨ ͍
E Y E S A R E C L O
S E D .
E Y E S A R E C L O
S E D … ? ? ?
ͷ ։ ͍ͯ ͍ Δ ׂ ߹ Λ
ͬ ͱ ࡉ ͔ ͘ ઃ ఆ ͠ ͠ ͨ ͍ ɻ
ׂ ߹ ܾ Ί Α ͏ ͱ ࢥ ͍ ɺ
σ Ϟ Λ ͯ͠ Έ ͨ ɻ
None
None
None
None
None
None
N O T S M I L I N G
…
None
None
None
E Y E S A R E C L O
S E D
None
None
None
࣌ ʑ ى ͜ Δ ϗ ϥ ʔ ݱ
ɻ
ઃ ఆ ͕ܾΊΒΕͳ͍ɾɾɾ
Χ ϯ ϑ Ν Ϩϯε ͷ Ϩ λ ο ν
ʹ ͑Δ ɾ ɾ ɾ ʁ ࡞੍࡞ʹΩπΠͷ͕͋Δ͔…
ࠓ ճ ࢲ ͕ ݴ ͍ ͨ ͔ ͬ ͨ
͜ ͱ
• ͖ͳ͜ͱʹٕज़ΛབྷΊΔͷͬͯ ͬͺΓͨͷ͍͠ɻ
T H A N K Y O U F O
R L I S T E N I N G ! ! ! @nun_is_tiger Kana Kitagawa ͱΓ͋͑ͣMakikomi Tigerͬͯௐ͍ͯͩ͘͞ɻ