Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
目つぶり検証機作成期 ~サーバーレス初心者の手始め~
Search
Kana Kitagawa
December 14, 2019
Technology
0
1.7k
目つぶり検証機作成期 ~サーバーレス初心者の手始め~
Serverless Days FukuokaでのLT登壇資料です。
Kana Kitagawa
December 14, 2019
Tweet
Share
More Decks by Kana Kitagawa
See All by Kana Kitagawa
#devreljp コミュニティネイティブな私のキャリアの築き方
ktkn1129
1
300
#CMC_Meetup コミュニティの主体がCSからマーケに変わって気づいた良さの違い
ktkn1129
0
650
コミュニティへ巻き込む人の見つけ方 ~ ヒントはインターネット上にあり? ~
ktkn1129
0
1.3k
絶対コミュニティに入った方が人生も楽しくなるのを初参加の人に伝えたい
ktkn1129
0
920
データ分析初心者が離脱しないためのModeのサポートの手厚さについて
ktkn1129
0
930
みんなでOne Teamになって良いプロダクトを作るためのチームコミュニケーションについて
ktkn1129
0
870
LINEを通じたサブスクリプション体験 ~LIFF meets Stripe~
ktkn1129
0
1.8k
イベントでのテンションを上げさせる アガる動画を作る
ktkn1129
0
390
なんやかんやで人生、無駄なことなんてない。 〜メディアアート専攻だった私が いけてる動画を作るまで〜
ktkn1129
1
1.4k
Other Decks in Technology
See All in Technology
LLM開発を支えるエヌビディアの生成AIエコシステム
acceleratedmu3n
0
370
AWS re:Inforce 2025 re:Cap Update Pickup & AWS Control Tower の運用における考慮ポイント
htan
1
210
KubeCon + CloudNativeCon Japan 2025 Recap
donkomura
0
160
SRE新規立ち上げ! Hubbleインフラのこれまでと展望
katsuya0515
0
160
反脆弱性(アンチフラジャイル)とデータ基盤構築
cuebic9bic
2
160
Unson OS|48時間で「売れるか」を判定する AI 市場検証プラットフォーム
unson
0
170
마라톤 끝의 단거리 스퍼트: 2025년의 AI
inureyes
PRO
1
680
ビジネス文書に特化した基盤モデル開発 / SaaSxML_Session_2
sansan_randd
0
260
20250807_Kiroと私の反省会
riz3f7
0
140
AIエージェントを現場で使う / 2025.08.07 著者陣に聞く!現場で活用するためのAIエージェント実践入門(Findyランチセッション)
smiyawaki0820
6
600
生成AI導入の効果を最大化する データ活用戦略
ham0215
0
110
「育てる」サーバーレス 〜チーム開発研修で学んだ、小さく始めて大きく拡張するAWS設計〜
yu_kod
1
250
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.4k
Embracing the Ebb and Flow
colly
86
4.8k
Unsuck your backbone
ammeep
671
58k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
How GitHub (no longer) Works
holman
314
140k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Transcript
ͭͿ Γ ݕ ূ ػ ࡞ ظ ~
α ʔόʔ Ϩε ॳ ৺ ऀ ͷ ख ࢝ Ί ~ K A N A K I TA G A WA
A G E N D A • ࣗݾհ • ࠓճ
Γ͔ͨͬͨ͜ͱ • ࣮ࡍʹߦͬͨ͜ͱ • ΑΓਖ਼֬ʹ ͔ͨͬͨ͠ • ࠓճࢲ͕ݴ͍͔ͨͬͨ ͜ͱ
K A N A K I TA G A WA
• “͍͕ͨʔ”(͵Μ) ͱݺΕͯ·͢ɻ #MakikomiTiger • ؔେֶ 4ੜ (ઐ߈:ϝσΟΞΞʔτ) • དྷ4݄͔Β౦ژͰ ಇ͖࢝Ί·͢ʂ • ࣸਅͷপͷຽ
F I L M P H O T O G
R A P H Y
D I G I TA L P H O T
O G R A P H Y 20202݄8.9ʹେࡕͰೋਓͰࣸਅలΛ͠·͢ɻ
B E F O R E A F T E
R Shooting & Retouch ΞΠίϯࡱӨͷ͝ґཔҾ͖ड͚·͢ͷͰ͓ؾܰʹɻ
ࠓ ճ Γ ͨ ͔ ͬ ͨ ͜
ͱ
None
ͭͿ Γ ݕ ূ ࡞ ظ ~ α
ʔόʔ Ϩε ॳ ৺ ऀ ͷ ख ࢝ Ί ~ K A N A K I TA G A WA
લ ճ ฉ ͍ͯ͘ ͩ ͞ ͬ ͨ ํ ʂ
P H O T O S × S E R
V E R L E S S … ?
ͦ ͷ લ ʹ ɾ ɾ ɾ
ࢲ ͷ ࣸ ਅ ͷ Ϩ λ ο ν ͷ
ख ॱ 1.ࣸਅΛLightroomܦ༝ͰϩʔΧϧʹऔΓࠐΉɻ 2.Λᛉ͍ͬͯΔࣸਅɺϐϯϙέͷࣸਅҎ֎Λ ϨʔςΟϯάɻ 3.ͦͷճͷϨλονͷϕʔεͱͳΔ৭ຯͰҰຕϨλονɻ 4.ϨʔςΟϯάͨ͠ͷʹઌ΄ͲͷઃఆΛϖʔετɺ֤ʑΛ ඍௐɻ͞Βʹબผ͠ɺϨʔςΟϯάɻ 5.બΜͩͷ͚ͩΛॻ͖ग़͠ɻ
ࢲ ͷ ࣸ ਅ ͷ Ϩ λ ο ν ͷ
ख ॱ 1.ࣸਅΛLightroomʹऔΓࠐΉɻ 2.Λᛉ͍ͬͯΔࣸਅɺϐϯϙέͷࣸਅҎ֎Λ ϨʔςΟϯάɻ 3.ࠓճͷϨλονͷϕʔεͱͳΔ৭ຯͰҰຕϨλονɻ 4.ϨʔςΟϯάͨ͠ͷʹઌ΄ͲͷઃఆΛϖʔετɺ֤ʑΛඍௐɻ͞Βʹબ ผ͠ɺϨʔςΟϯάɻ 5.બΜͩͷ͚ͩΛॻ͖ग़͠ɻ ҙ֎ͱ͕࣌ؒऔΒΕΔɻ
1 0 0 ຕ ΄ Ͳ ࡱ ͬͯ ࣮
ࡍ ͑Δ ͷ 5 0 ຕ ΄ Ͳ ɻ બ ผ ͢ Β ͯ͠ ͳ ͍ ͷ ͕ 2 0 0 0 ຕ ͘ Β ͍ ͋ Δ ɻ
Ϩ λ ο ν ྗ ͢ Δ ͨ
Ί ʹ अ ຐ ͳ ࣌ ؒ ল ͖ ͨ ͍ ɻ
Amazon Rekognition
A M A Z O N R E K O
G N I T I O N ͱ ʁ • ը૾ɺಈըͷੳπʔϧ • ΦϒδΣΫτɺγʔϯɺإͷݕग़ɺ ςΩετͷநग़ɺ༗໊ਓͷೝࣝɺը૾ ͷෆదͳίϯςϯπͷࣝผ͕Մೳ
إ ੳ
إ ੳ Ͱ ೝ ࣝ Ͱ ͖ Δ ͜
ͱ • স͍ͬͯΔ͔Ͳ͏͔ • ಏ͕։͍͍ͯΔ͔Ͳ͏͔ • ޱ͕։͍͍ͯΔ͔Ͳ͏͔ • ײ ͳͲɻ
إ ੳ Ͱ ೝ ࣝ Ͱ ͖ Δ ͜
ͱ • স͍ͬͯΔ͔Ͳ͏͔ •ಏ͕։͍͍ͯΔ͔Ͳ͏͔ • ޱ͕։͍͍ͯΔ͔Ͳ͏͔ • ײ ͳͲɻ
ཧ 1.Amazon S3ʹࡱӨͨ͠ૉࡐΛೖΕΔ 2.Amazon S3ͷը૾ͷΞοϓϩʔυΛτϦΨʔʹAmazon RekognitionΛୟ͘ 3.Amazon RekognitionͰإೝࣝ 4.ᛉΓ͍ͯ͠ͳ͍ը૾ΛϦετԽ
5.ϦετͰࢦఆ͞Ε͍ͯΔը૾ΛผͷS3όέοτʹҠಈ 6.ϦετͰදࣔ
࣮ ࡍ ʹ ߦ ͬ ͨ ͜ ͱ
Δ ͜ ͱ ͷ ཧ 1.إੳΛ௨͢લɺ௨ͨ͠ޙͷը૾ΛೖΕΔS3όέοτΛ ࡞͢Δ 2.Amazon
S3ʹΞοϓϩʔυ͞Εͨ͜ͱΛAWS LambdaͰ ݕ͢Δ 3.AWS Lambda͕Ξοϓϩʔυ͞ΕͨϑΝΠϧΛAmazon Rekognitionʹ͛ͯإੳॲཧΛߦ͏ 4.إੳͷ݁Ռɺͷۭ͍͍ͯΔը૾Λ௨ͨ͠ޙͷS3 όέοτʹίϐʔ
Serverless Framework
S E R V E R L E S S
F R A M E W O R K ͱ ʁ • Serverless ApplicationΛߏཧɺσϓϩΠ͢ΔͨΊ ͷπʔϧ • ίϛϡχςΟυϦϒϯͰ։ൃ͕ߦΘΕ͍ͯΔ • ຊޠϑΥʔϥϜ͋Γɻ https://github.com/serverless-japan/forum
https://qiita.com/horike37/items/b295a91908fcfd4033a2
Amazon Rekognition × AWS Lambda
P H O T O S × S E R
V E R L E S S … !
ੈ ͷ த ʹ ༷ ʑ ͳ σ ʔ
λ ܗ ࣜ ͕ ͋ Γ · ͢ɻ
A M A Z O N R E K O
G N I T I O N ͷ ҙ • ೝࣝͰ͖Δσʔλ JPGɺ PNGͷΈ
Ұ R A W σ ʔ λ Λ J
P G ʹ ॻ ͖ ͑ ͳ ͚ Ε إ ೝ ࣝ ͑ ͳ ͍ ɾ ɾ ɾ ʁ
࣍ ճ ͷ ՝ લճ·Ͱͷ͓
ࠓ ͕ ࣍ ճ ͩ ʂ
1.SDΧʔυ͔ΒσʔλΛίϐʔ ϑΥϧμʹ֨ೲ 2.ͦͷσʔλΛRAW͔ΒJPGʹม 3.มͨ͠ϑΝΠϧ͚ͩΛผϑΥϧμʹ Ҡಈ 4.S3ʹΞοϓϩʔυ
P Y T H O N L I B R
A RY • RAWPy • rawσʔλΛಡΈࠐΈ • ύϥϝʔλ͕ଟ͘ɺ͍͍ײ͡ʹউखʹϨλον͞ΕΔ • imageio • jpegʹม
None
ݩσʔλ rawpyޙͷσʔλ ᛉΓݕূ͞ΕͨΒ͍͍ͷͰؔͳ͍͚Ͳ ͬͱͬͯΈͨ͘ͳΔϥΠϒϥϦ
͍ Α ͍ Α … ᛉ Γ ݕ ূ
ػ ͷ ࡞
։ ൃ ڥ • Serverless Framework • Python 3.7
None
•handler.py •serverless.yml
S E R V E R L E S S
. Y M L Λ ฤ ू ͢ Δ
S E R V E R L E S S
. Y M L Λ ฤ ू ͢ Δ • AWS S3ͷΞΫηε • Amazon RekognitionͷΞΫηε • ϦιʔεʹAWS S3Λઃఆ͢Δ
H A N D L E R . P Y
Λ ฤ ू ͢ Δ
H A N D L E R . P Y
Λ ฤ ू ͢ Δ • S3όέοτͷதΛಡΈऔΔ • Amazon Rekognitionʹ͛Δ • ͕։͍͍ͯΔ͔Ͳ͏͔ผ͢Δ • EyesOpen=True • ։͍͍ͯΔͷ͚ͩɺผͷόέοτʹೖΕΔ
7 7 2 ຕ ͷ બ ผ ͕ 1 0
ʂ
Α Γ ਖ਼ ֬ ͳ ͷ Λ ࡞ Γ
ͨ ͍
E Y E S A R E C L O
S E D .
E Y E S A R E C L O
S E D … ? ? ?
ͷ ։ ͍ͯ ͍ Δ ׂ ߹ Λ
ͬ ͱ ࡉ ͔ ͘ ઃ ఆ ͠ ͠ ͨ ͍ ɻ
ׂ ߹ ܾ Ί Α ͏ ͱ ࢥ ͍ ɺ
σ Ϟ Λ ͯ͠ Έ ͨ ɻ
None
None
None
None
None
None
N O T S M I L I N G
…
None
None
None
E Y E S A R E C L O
S E D
None
None
None
࣌ ʑ ى ͜ Δ ϗ ϥ ʔ ݱ
ɻ
ઃ ఆ ͕ܾΊΒΕͳ͍ɾɾɾ
Χ ϯ ϑ Ν Ϩϯε ͷ Ϩ λ ο ν
ʹ ͑Δ ɾ ɾ ɾ ʁ ࡞੍࡞ʹΩπΠͷ͕͋Δ͔…
ࠓ ճ ࢲ ͕ ݴ ͍ ͨ ͔ ͬ ͨ
͜ ͱ
• ͖ͳ͜ͱʹٕज़ΛབྷΊΔͷͬͯ ͬͺΓͨͷ͍͠ɻ
T H A N K Y O U F O
R L I S T E N I N G ! ! ! @nun_is_tiger Kana Kitagawa ͱΓ͋͑ͣMakikomi Tigerͬͯௐ͍ͯͩ͘͞ɻ