Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
tidyverse tutorial 2
Search
kur0cky
September 27, 2019
Programming
1
61
tidyverse tutorial 2
tidyverse 超入門 2
講義用資料
kur0cky
September 27, 2019
Tweet
Share
More Decks by kur0cky
See All by kur0cky
The bootstrapping method for everyone
kur0cky
3
970
音楽理論と方向統計学の初歩/introduction of circular statistics and musicology
kur0cky
5
2.1k
NLP introduction in R 1
kur0cky
0
83
tidyverse tutorial 1
kur0cky
1
73
Other Decks in Programming
See All in Programming
GitHub Copilotを使いこなせ!/mastering_github_copilot!
kotakageyama
2
460
エンジニアインターン「Treasure」とHonoの2年、そして未来へ / Our Journey with Hono Two Years at Treasure and Beyond
carta_engineering
0
470
GC25 Recap: The Code You Reviewed is Not the Code You Built / #newt_gophercon_tour
mazrean
0
140
AI Agent 時代的開發者生存指南
eddie
4
2.2k
SidekiqでAIに商品説明を生成させてみた
akinko_0915
0
110
組込みだけじゃない!TinyGo で始める無料クラウド開発入門
otakakot
2
380
外接に惑わされない自システムの処理時間SLIをOpenTelemetryで実現した話
kotaro7750
0
140
実践Claude Code:20の失敗から学ぶAIペアプログラミング
takedatakashi
18
9.3k
Reactive Thinking with Signals and the Resource API
manfredsteyer
PRO
0
120
社会人になっても趣味開発を続けたい! / traPavilion
mazrean
1
120
CSC305 Lecture 10
javiergs
PRO
0
330
AI 駆動開発におけるコミュニティと AWS CDK の価値
konokenj
5
310
Featured
See All Featured
The Invisible Side of Design
smashingmag
302
51k
It's Worth the Effort
3n
187
28k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Code Review Best Practice
trishagee
72
19k
Embracing the Ebb and Flow
colly
88
4.9k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Transcript
σʔλղੳͱલॲཧᶘ .ࠇ༟ୋ !FEUVTBDKQ
࣍ 3FWJFX&YFSDJTF +PJO 5JEZ%BUB !2
ຊ༻͢Δσʔλ TUBSXBST w ελʔΥʔζͷొਓʹؔ͢Δσʔλ IUUQTXBQJDP qJHIUT w ʹ-(" +',
&83Λग़ൃͨͯ͢͠ͷϑϥΠτͷఆࠁσʔλ XFBUIFS w -(" +', &83ͷఱީ෩ͷใ ࣌ؒ͝ͱ BJSMJOFT w ߤۭձࣾͷςʔϒϧ !3
3FWJFX&YFSDJTF
%BUB'SBNFͷجຊૢ࡞ EQMZS w ม ྻ ͷநग़ w ؍ଌ ߦ ͷநग़
w ؍ଌ ߦ ͷฒͼସ͑ w ৽ͨͳม ྻ ͷ࡞ w ूܭ w άϧʔϓԽ !5 • select() • filter() • arrange() • mutate() • summarise() • group_by()
͍ํ w ୈҾʹσʔλϑϨʔϜΛ༩͑Δ w ୈҾҎ߱Ͱྻ໊ΛΫΦʔςʔγϣϯແ͠Ͱ༩͑Δ w Γ৽ͨͳσʔλϑϨʔϜ %>%ͱ߹ΘͤͯരσʔλϋϯυϦϯάʂʂ !6
ԋश qJHIUTσʔλʹؔͯ͠ɺҎԼͷʹ͑Α ඈߦڑ͕࠷Ͱ͋Δศͷग़ൃͱతͲ͔͜ ౸ண࣌ࠁͷΕ͕ݦஶͳߤۭձࣾͲ͔͜ ग़ൃ࣌ࠁͱ౸ண࣌ࠁͷΕ͕ݦஶͳߤۭձࣾͲ͔͜ Կ࣌ൃͷඈߦػ͕࠷ଟ͍͔
ߤۭձࣾͷൟظ͍͔ͭ શͯͷߦͰdep_time - sched_dep_time = dep_delayͱͳ͍ͬͯΔ͜ͱΛ֬ೝ ͤΑ !7 # ύοέʔδ͔ΒಡΈࠐΉ library(nycflights13) data(flights)
+PJO
+PJO ͭͷςʔϒϧΛ LFZΛͱʹ݁߹͢Δૢ࡞ w ʮֶੜͷݸਓใςʔϒϧʯ w ʮतۀͷใςʔϒϧʯ w ʮཤमɾςʔϒϧʯ LFZ
w ʮֶੜʯ ʮʯɿLFZֶ੶൪߸ w ʮतۀʯ ʮཤमʯɿLFZतۀ*% !9 ʮਓɾतۀɾͷςʔϒϧʯ
+PJOͷछྨ w YͱZΛ+PJO͍ͨ͠ w ͬͱ୯७ͳͷ *OOFSKPJO w ॏෳ͢ΔLFZ͚ͩ͢ !10 ग़యɿIUUQTSETIBEDPO[
w -FGUKPJO w YͷLFZΛશͯ͢ w 3JHIUKPJO w ZͷLFZΛશͯ͢ w 'VMMKPJO
w ྆ํͷLFZΛશͯ͢ !11 ग़యɿIUUQTSETIBEDPO[
**_join()ͷ͍ํ inner_join(band_members, band_instruments, by = “name”) left_join(band_members, band_instruments2, by =
c(“name” = “artist”)) !12 > band_members name band 1 Mick Stones 2 John Beatles 3 Paul Beatles > band_instruments name plays 1 John guitar 2 Paul bass 3 Keith guitar > band_instruments2 artist plays 1 John guitar 2 Paul bass 3 Keith guitar
࿅श inner_join(), left_join(), right_join(), full_join() ͦΕͧΕͷग़ྗ݁ՌΛ༧͠ ࣮ࡍʹಈ͔ͯ֬͠ೝͤΑ qJHIUTσʔλͱBJSMJOFTσʔλΛDBSSJFSྻͰ݁߹ͤΑ
qJHIUTσʔλͱXFBUIFSσʔλΛPSJHJO ZFBS NPOUI EBZ IPVS ྻͰ݁߹ͤΑ !13
5JEZ%BUB
UJEZEBUB ͖ͪΜͱͨ͠σʔλ ఆٛʢग़యɿIUUQTSETIBEDPO[ʣ w ҰͭͷྻʹҰͭͷม BUPNJDWFDUPS w ҰͭͷߦʹҰͭͷ؍ଌ w
ҰͭͷηϧʹҰͭͷ w ݸʑͷ؍ଌશͯಉ͡ܗΛ͍ͯ͠Δ σʔλϑϨʔϜ্هΛຬͨ͢Α͏ʹ࡞Ζ͏ ˞ߦ໊ʢSPXOBNFTʣΘͣʹJOEFYJEͷྻΛ࡞Ζ͏ !15
NFTTZEBUB w Α͘ݟΔܗ w ਓؒʹΘ͔Γ͍͢ ʮԣ࣋ͪܗʯ w ҰͭͷྻʹҰͭͷม˚ w ҰͭͷߦʹҰͭͷ؍ଌ✖
w ҰͭͷηϧʹҰͭͷ̋ !16 12࣌ 15࣌ 17࣌ ౦ژ ‗ ‘ ‘ ໊ݹ ‗ ‗ ‘ େࡕ ‘ ‘ ‘ ྻ໊ ߦ໊
NFTTZEBUB w Α͘ݟΔܗ w ਓؒʹΘ͔Γ͍͢ ʮԣ࣋ͪܗʯ w ҰͭͷྻʹҰͭͷม˚ w ҰͭͷߦʹҰͭͷ؍ଌ✖
w ҰͭͷηϧʹҰͭͷ̋ !17 12࣌ 15࣌ 17࣌ ౦ژ ‗ ‘ ‘ ໊ݹ ‗ ‗ ‘ େࡕ ‘ ‘ ‘ ࣌ࠁ ఱؾ
UJEZEBUB w ղੳͰѻ͍͍͢ w ׳Εͳ͍͏ͪݟʹ͍͘ʁ ʮॎ࣋ͪܗʯ w ҰͭͷྻʹҰͭͷม̋ w ҰͭͷߦʹҰͭͷ؍ଌ̋
w ҰͭͷηϧʹҰͭͷ̋ !18 ࣌ࠁ ఱؾ ౦ژ ࣌ ‗ ໊ݹ ࣌ ‗ େࡕ ࣌ ‘ ౦ژ ࣌ ‘ ໊ݹ ࣌ ‗ େࡕ ࣌ ‘
NFTTZUJEZ !19 ྻ໊ʹͳͬͯ͠·͍ͬͯͨม໊ Λ ৽͍͠ZFBSͱ͍͏มʹ͢Δ
UJEZNFTTZ !20
3Ͱͷॎԣม !21 ॎ࣋ͪ ԣ࣋ͪ spread() gather() gather(df, key = “ྻ໊ʹདྷ͍ͯͨมΛ֨ೲ͢Δ৽ͨͳม໊”,
value = “ෳͷྻʹ·͕͍ͨͬͯͨมΛ·ͱΊΔ৽ͨͳม໊”, - มʹߟྀ͠ͳ͍ྻ໊) spread(df, key, value, fill = ͛ͨͱ͖ܽଌʹͳΔͱ͜ΖΛຒΊ͍ͨ)
࿅श ҎԼͷίʔυͰTUPDLT ٖࣅతͳऩӹσʔλ Λ࡞Γ ॎʹͤΑ stocks <- data.frame(
time = as.Date('2009-01-01') + 0:9, X = rnorm(10, 0, 1), Y = rnorm(10, 0, 2), Z = rnorm(10, 0, 4) ) ͱʹͤ !22
࣍ճ·Ͱͷ՝
՝ 1. ࠷ؾԹ͕ߴ͍தग़ൃͨ͠ศΛѲͤΑ 2. ଌఆ͞Εͨσʔλͷ͏ͪɺϘʔΠϯάࣾͷඈߦػԿճඈΜͰ͍Δ͔ 3. ඈߦػʹ࠾༻͞Ε͍ͯΔΤϯδϯͷछྨ͝ͱʹɺ1ճ͋ͨΓͷฏۉඈ ߦڑΛࢉग़ͤΑ 4. ڑ
or ڑʹಛԽ͍ͯ͠Δߤۭձࣾ͋Δ͔ɻ͋ΔͳΒɺஅ ཧ༝ड़Αɻ 5. ౦ʹ͔ͬͯඈͿศͱʹ͔ͬͯඈͿศͷͲͪΒ͕ଟ͍͔ (ඈߦػ తʹ͔ͬͯਐ͢Δͷͱ͢Δ) 6. ग़ൃ࣌ͷ࣪ͱɺग़ൃͷԆʹ૬ؔ͋Δ͔ !24
Α͋͘Δ࣭ w σʔλαΠΤϯεͷԿָ͕͍͠ʁ w σʔλ͔ΒݟΛಘΔ ͱ͍͏खଓ͖͕ԿΑΓָ͍͠ ࢲݟ w Ծઆɾݕূ͕ΩϨΠʹܾ·ͬͨͱ͖͕ؾ͍͍࣋ͪ
w ੜͷ͏ͪԿΛͨ͠Βྑ͍ʁ w جૅ ౷ܭֶ ࠷దԽ ઢܗ FUD ΛΩϟονΞοϓ͢Δ࣌ؒࠓޙͳ͘ͳͬͯ ͍͘ w ڵຯͷ͋Δσʔλ ڝഅ εϙʔπ FUD Λରʹ ੳΛֶΜͰ͍͘ͷྑ͍͔ ָ͠Ήͷ͕Ұ൪ w 3͕͍͠ w ؆୯ͦ͞͠͏ͳࢀߟॻΛݟͯΈΔͷ˕ !25