Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介_Are Embedded Potatoes Still Vegetables_ On...
Search
ShitoRyo
December 20, 2023
Research
0
130
論文紹介_Are Embedded Potatoes Still Vegetables_ On the Limitation of WordNet Embeddings for Lexical Semantics
ShitoRyo
December 20, 2023
Tweet
Share
More Decks by ShitoRyo
See All by ShitoRyo
論文紹介_LSC-Eval: A General Framework to Evaluate Methods for Assessing Dimensions of Lexical Semantic Change Using LLM-Generated Synthetic Data
lexusd
0
6
Tutorial of Coding Environment for Research by Docker
lexusd
0
14
Computational Approaches for Diachronic Semantic Change Detection_2024_8
lexusd
0
40
論文紹介_Learning Dynamic Contextualised Word Embeddings via Template-based Temporal Adptation
lexusd
0
120
論文紹介_Interpretable Word Sense Representations via Definition Generation_ The Case of Semantic Change Analysis
lexusd
0
110
論文紹介_Twitter Topic Classification
lexusd
0
96
論文紹介_What is Done is Done_ an Incremental Approach to Semantic Shift Detection
lexusd
0
110
Demoの作り方_研究会チュートリアル
lexusd
0
140
論文紹介_Ruddit_Norms of Offensiveness for English Readdit Comments
lexusd
0
44
Other Decks in Research
See All in Research
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
250
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
170
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
460
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
640
Language Models Are Implicitly Continuous
eumesy
PRO
0
340
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
170
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
420
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
290
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
10k
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1k
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
600
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
180
Featured
See All Featured
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Documentation Writing (for coders)
carmenintech
76
5.2k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Facilitating Awesome Meetings
lara
57
6.7k
KATA
mclloyd
PRO
32
15k
Code Review Best Practice
trishagee
73
19k
We Have a Design System, Now What?
morganepeng
54
7.9k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
The Pragmatic Product Professional
lauravandoore
37
7.1k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
How to Ace a Technical Interview
jacobian
280
24k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Transcript
EMNLP 2023 2023.12.20 M2 凌 志棟 1
概要 Knowledge Base Embedding(KBE)が語義をモデリングする能力を調べた。 2つの仮説: • KBEモデルは単語間の関係を捉えている⇒語義も捉えられている。 • KBEモデルの関係予測性能は他のタスクの性能の代理(Proxy) を検証
結果どちらも成立しなかった(むしろ負の相関) 2
Knowledge Base Embedding (KBE) Models Knowledge Base = 知識グラフ Knowledge
Baseには(h,r,t)のようなトリプルが含まれている ノード (Entity) h と t は関係 r で連結 e.g. BERT is a Transformerの場合 (BERT, is a, Transformer) KBEはこのような関係をベクトル空間でうまく表現するには v BERT + v is a = v Transformer を成立させる ノードとその関係をモデリングするのはKBEモデル 3 BERT Transformer is a h t r
TransE [Bordes+, 2013] モチベ:(h,r,t)の関係をv h + v r ≈ v
t で表現 トリプルの関係の正しさを関係スコア f(h,r,t)=||v h + v r - v t || (ノルム)で表現 正しいトリプルであれば f(h,r,t) が0に近い トリプル集合Dとして、目的関数L(V)を最小化するように学習 4 Dにある正例 hかtをランダムに置き換えた負例
DistMult[Yang+, 2015] TransEと違って、関係を行列で表現する関係スコアを使う f(h,r,t) = vT h Rv t Rは対称な関係行列にしたため、行列対角化することで計算速度向上
f(h,r,t)=f(t,r,h)はモデリングできるが、非対称関係は不向き(1対n) 5
他のKBEモデル • MuRP [Balaževic+, 2019] ◦ 双曲空間埋め込みでノードを表現し、メビウス変換で関係を表現 ◦ 階層関係や (1対n)(n対n)関係をうまく表現できた
• KBGAT[Nathani+, 2019]、rGAT[Chen+, 2021] ◦ Graph Neural Network(GNN)ベースのモデル、より複雑な関係を Graph Attentionで表現 ◦ 関係予測タスクにつよい • FuncE [Chen+, 2023]←本研究で提案 ◦ ノードをファジィ関数 f:Rn→[0,1] で表現 ◦ 異なる種類の関係に対して異なる関係スコアを使用 (同義語ならDistMult、ほかはTransE) ◦ ノードの上位下位関係を自然に表現できる 6
KBEモデルの訓練・評価用データセット • WN18[Bordes+, 2013] ◦ WordNetから抽出したトリプル集合 • WN18RR[Dettmers+, 2018] ◦
WN18の逆関係をフィルタリング • WN18A ◦ 関係種類を増やさずにノード数とトリプル数を増やす • WN25 ◦ 全部増やす 7 データセット 関係数 ノード数 トリプル数 WN18 18 40,943 141,442 WN18RR 11 40,943 93,003 WN18A 18 112,195 217,495 WN26 25 116,744 363,593
検証実験設定 • (再考)仮説: ◦ KBEモデルは単語間の関係を捉えている⇒語義も捉えられている。 ◦ KBEモデルの関係予測性能は他のタスクの性能の代理=関係予測ができれば語義タスクもできる • 使用するモデル: ◦
TransE, DistMult, MuRP, FuncE, KBGAT, rGAT, Wnet2vec (Baseline) • 訓練データ:WN18RR, WN18A, WN25 • パラメータ:Table 8 • 評価指標: ◦ 関係予測タスク:MRR(平均逆順位)とHits@k(正解が上位k個の答えにある割合) ◦ 語義タスク:4種類のタスクで評価 8
語義モデリング性能評価 • Word Similarity: SimLex999 ◦ Spearman rho • Word
Analogy: BATS ◦ Hits@10 • POS-tagging: PTB ◦ acc. • NER: CoNLL’03 ◦ F1 score 9
関係予測タスクと語義タスクの性能は負の相関 10
Good at Link Prediction ≠ Good at Semantics • 関係予測の性能と語義タスクの性能が負の相関
• 同種類タスクの性能は正の相関 11
関係予測タスクと語義タスクの性能は負の相関 12
語義類似性・類推は品詞タグ付け・NERと正の相関 13
訓練データ量の影響 • 訓練データを増やしても性能向上は見られない(むしろ低下した場合が多い) • DistMultとrGATの性能低下は関係スコアが言語性質を考慮しないに起因すると 14
上位関係が近い単語の語義類似性を表現しにくい • 上位関係が近い単語の類似度が高いはず • TransEはOKだが、DistMultとrGATは表現できていない 15 ナス科野菜_________
上下位関係の推移性を表現しにくい • ほぼ全部のKBEモデルが上位語の推移関係を予測できない • FuncEはファジィ関数のため性質上推移を表現できる 16 Potatoは野菜、野菜は食べ物⇒Potatoは食べ物
語義タスクで単語品詞別の影響とデータ量の影響 • 類似度タスクでは形容詞が名詞と動詞より結果がよい • KBEモデルは辺の数が多いノードに高い類似度を与える傾向がある • 関連性は高いが類似度が低い関係に高いスコア は SimLexの語義類似度に反する • WN18A→WN25データを増やすことで、類似度タスクで性能低下・類推タスクが性能向上
17
本研究はKEBモデルの語義モデリング能力を評価した。 2つの仮説を検証したところ • KBEモデルは、関係予測でいい性能≠語義類似度タスクでいい性能 • 関係予測評価はKBEモデルの語義モデリング能力の評価に向いていない Conclusions 18