Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Enhanced EC Recommendations: Trustworthy Valida...
Search
LINE Developers Taiwan
PRO
September 23, 2024
Technology
0
60
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for Two-Tower Model
Event: iThome Hello World Dev Conference
Speaker: Dan Chen
LINE Developers Taiwan
PRO
September 23, 2024
Tweet
Share
More Decks by LINE Developers Taiwan
See All by LINE Developers Taiwan
菸酒生在 LINE Taiwan 的後端雙刀流
line_developers_tw
PRO
0
1.2k
讓測試不再 BB! 從 BDD 到 CI/CD, 不靠人力也能 MVP
line_developers_tw
PRO
0
1.2k
DB 醬,嗨!哪泥嘎斯基?
line_developers_tw
PRO
0
1.2k
比起獨自升級 我更喜歡 DevOps 文化 <3
line_developers_tw
PRO
0
1.2k
工具人的一生: 開發很多 AI 工具讓我 慵懶過一生
line_developers_tw
PRO
0
1.2k
從四件事帶你見識見識 事件驅動架構設計 (EDA)
line_developers_tw
PRO
0
1.1k
TODAY 看世界(?) 是我們在看扣啦!
line_developers_tw
PRO
0
1.2k
你想成為什麼樣的開發者?
line_developers_tw
PRO
0
26
研究生的 LINER生活
line_developers_tw
PRO
0
27
Other Decks in Technology
See All in Technology
生まれ変わった AWS Security Hub (Preview) を紹介 #reInforce_osaka / reInforce New Security Hub
masahirokawahara
0
440
Tech-Verse 2025 Keynote
lycorptech_jp
PRO
0
1.8k
Delta airlines Customer®️ USA Contact Numbers: Complete 2025 Support Guide
deltahelp
0
350
生成AI時代 文字コードを学ぶ意義を見出せるか?
hrsued
1
810
KubeCon + CloudNativeCon Japan 2025 Recap Opening & Choose Your Own Adventureシリーズまとめ
mmmatsuda
0
260
タイミーのデータモデリング事例と今後のチャレンジ
ttccddtoki
6
2.3k
AIの全社活用を推進するための安全なレールを敷いた話
shoheimitani
2
450
論文紹介:LLMDet (CVPR2025 Highlight)
tattaka
0
310
United Airlines Customer Service– Call 1-833-341-3142 Now!
airhelp
0
160
LangChain Interrupt & LangChain Ambassadors meetingレポート
os1ma
2
290
さくらのIaaS基盤のモニタリングとOpenTelemetry/OSC Hokkaido 2025
fujiwara3
2
360
生成AI時代の開発組織・技術・プロセス 〜 ログラスの挑戦と考察 〜
itohiro73
1
430
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Adopting Sorbet at Scale
ufuk
77
9.4k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Writing Fast Ruby
sferik
628
62k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.4k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
GraphQLとの向き合い方2022年版
quramy
49
14k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
810
Transcript
None
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for
Two-Tower Model EC Data Dev / Data Scientists Dan Chen
Dan LINE Taiwan EC Dev - Data Scientis Work Experience
Side Project
01 02 03 04 Evaluation Framework Offline & Online Evaluation
LLM on Recommendation What is Trustworthy 05 Q&A CONTENT
Why it’s so important 01 What is Trustworthy
Element of trustworthy 特點項目文字 特點項目 Trustworthy 特點項目文字 特點項目 特點項目文字 特點項目
Four Perspective 特點項目文字 特點項目 Trustworthy Recommendation 特點項目文字 特點項目 特點項目文字 特點項目
Data Preparation Data Representation Recommendation Generation Performance Evaluation
How to Correctly Evaluate AI 02 Evaluation Framework
Two - Stage Recommendation system Brickmaster Scalable Scenario-wise KPI -
Oriented Trustworthy
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to Correctly Evaluate AI 03 Offline & Online Evaluation
Key point to show how your algorithms can contribute to
your business Offline Evaluation
Key point to show how your algorithms can contribute to
your business Online Evaluation
Avoid pitfalls In Practice If experiment isn’t’ significant ?? Sample
ratio mismatch ?? Novelty effect ?? Key point to show how your algorithms can contribute to your business A/B test
Case – EC Shop recommendation
04 LLM On Recommendation
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Evaluate & Challenge 05 Conclusion
Conclusion Business Value OpenAI, Claude, Gemini XGBoost or OpenSource 來源:https://zh.wikipedia.org/zh-
tw/%E7%BE%8E%E5%9C%8B%E9%9A%8A%E9%95%B72%EF%BC%9A%E9%85%B7%E5%AF%9 2%E6%88%B0%E5%A3%AB 來源:https://images.app.goo.gl/HCygtJVtoPaU2KgX6
Conclusion & Challenge 1. Data Quality 2. Multiple – Metrics
evaluation 3. Conduct A/B test Experiment 4. Human Perception Evaluation Challenge
Q&A 聯絡資訊 (Linkedin – Dan Chen)
None
None