Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Enhanced EC Recommendations: Trustworthy Valida...
Search
LINE Developers Taiwan
PRO
September 23, 2024
Technology
0
40
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for Two-Tower Model
Event: iThome Hello World Dev Conference
Speaker: Dan Chen
LINE Developers Taiwan
PRO
September 23, 2024
Tweet
Share
More Decks by LINE Developers Taiwan
See All by LINE Developers Taiwan
從校園到職場 我的實習旅程
line_developers_tw
PRO
0
81
探索數據未來
line_developers_tw
PRO
0
6
MLE 的修煉之路
line_developers_tw
PRO
0
60
LINE 實習分享 & 國際黑客松參賽分享
line_developers_tw
PRO
0
36
在 GCP 運用 Parse 全家餐管理那堆 AI 應用的資料
line_developers_tw
PRO
0
33
40歲的我會給20歲的自己,關於軟體開發的7個建議
line_developers_tw
PRO
0
9.1k
從零到一:轉碼仔的實習攻略
line_developers_tw
PRO
0
56
如何在團隊發揮數據影響力: 以電商資料科學家為例
line_developers_tw
PRO
1
57
做Data超讚的 誰懂?
line_developers_tw
PRO
0
45
Other Decks in Technology
See All in Technology
17年のQA経験が導いたスクラムマスターへの道 / 17 Years in QA to Scrum Master
toma_sm
0
380
Symfony in 2025: Scaling to 0
fabpot
2
170
バックエンドエンジニアによるフロントエンドテスト拡充の具体的手法
kinosuke01
1
630
移行できそうでやりきれなかった 10年超えのシステムを葬るための戦略
ryu955
2
200
新卒エンジニア研修の試行錯誤と工夫/nikkei-tech-talk-31
nishiuma
0
190
Amazon Q Developer 他⽣成AIと⽐較してみた
takano0131
1
120
パスキー導入の課題と ベストプラクティス、今後の展望
ritou
7
1.2k
モジュラーモノリスでスケーラブルなシステムを作る - BASE のリアーキテクチャのいま
panda_program
7
2k
セマンティックレイヤー入門
ikkimiyazaki
8
2.7k
KCD Brazil '25: Enabling Developers with Dapr & Backstage
salaboy
1
120
スケールアップ企業のQA組織のバリューを最大限に引き出すための取り組み
tarappo
4
900
30代エンジニアが考える、エンジニア生存戦略~~セキュリティを添えて~~
masakiokuda
4
2k
Featured
See All Featured
Building Applications with DynamoDB
mza
94
6.3k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.4k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
21k
A Tale of Four Properties
chriscoyier
158
23k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
28
1.6k
Reflections from 52 weeks, 52 projects
jeffersonlam
349
20k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
30k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Building Adaptive Systems
keathley
41
2.5k
Documentation Writing (for coders)
carmenintech
69
4.7k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Transcript
None
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for
Two-Tower Model EC Data Dev / Data Scientists Dan Chen
Dan LINE Taiwan EC Dev - Data Scientis Work Experience
Side Project
01 02 03 04 Evaluation Framework Offline & Online Evaluation
LLM on Recommendation What is Trustworthy 05 Q&A CONTENT
Why it’s so important 01 What is Trustworthy
Element of trustworthy 特點項目文字 特點項目 Trustworthy 特點項目文字 特點項目 特點項目文字 特點項目
Four Perspective 特點項目文字 特點項目 Trustworthy Recommendation 特點項目文字 特點項目 特點項目文字 特點項目
Data Preparation Data Representation Recommendation Generation Performance Evaluation
How to Correctly Evaluate AI 02 Evaluation Framework
Two - Stage Recommendation system Brickmaster Scalable Scenario-wise KPI -
Oriented Trustworthy
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to Correctly Evaluate AI 03 Offline & Online Evaluation
Key point to show how your algorithms can contribute to
your business Offline Evaluation
Key point to show how your algorithms can contribute to
your business Online Evaluation
Avoid pitfalls In Practice If experiment isn’t’ significant ?? Sample
ratio mismatch ?? Novelty effect ?? Key point to show how your algorithms can contribute to your business A/B test
Case – EC Shop recommendation
04 LLM On Recommendation
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Evaluate & Challenge 05 Conclusion
Conclusion Business Value OpenAI, Claude, Gemini XGBoost or OpenSource 來源:https://zh.wikipedia.org/zh-
tw/%E7%BE%8E%E5%9C%8B%E9%9A%8A%E9%95%B72%EF%BC%9A%E9%85%B7%E5%AF%9 2%E6%88%B0%E5%A3%AB 來源:https://images.app.goo.gl/HCygtJVtoPaU2KgX6
Conclusion & Challenge 1. Data Quality 2. Multiple – Metrics
evaluation 3. Conduct A/B test Experiment 4. Human Perception Evaluation Challenge
Q&A 聯絡資訊 (Linkedin – Dan Chen)
None
None