Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Enhanced EC Recommendations: Trustworthy Valida...
Search
LINE Developers Taiwan
PRO
September 23, 2024
Technology
0
27
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for Two-Tower Model
Event: iThome Hello World Dev Conference
Speaker: Dan Chen
LINE Developers Taiwan
PRO
September 23, 2024
Tweet
Share
More Decks by LINE Developers Taiwan
See All by LINE Developers Taiwan
LINE 實習分享 & 國際黑客松參賽分享
line_developers_tw
PRO
0
12
在 GCP 運用 Parse 全家餐管理那堆 AI 應用的資料
line_developers_tw
PRO
0
17
40歲的我會給20歲的自己,關於軟體開發的7個建議
line_developers_tw
PRO
0
7k
從零到一:轉碼仔的實習攻略
line_developers_tw
PRO
0
17
如何在團隊發揮數據影響力: 以電商資料科學家為例
line_developers_tw
PRO
1
40
做Data超讚的 誰懂?
line_developers_tw
PRO
0
25
iOS Live Activity: Opportunities & Challenges
line_developers_tw
PRO
1
110
掌握 Feature Toggle 與 OpenFeature 規範
line_developers_tw
PRO
0
220
用 AI 和 LINE Bot 簡化生活:讓圖片告訴你何時該忙!-- LINE 工作坊
line_developers_tw
PRO
0
740
Other Decks in Technology
See All in Technology
ドメイン駆動設計の実践により事業の成長スピードと保守性を両立するショッピングクーポン
lycorptech_jp
PRO
12
2.2k
AWS re:Invent 2024 recap in 20min / JAWSUG 千葉 2025.1.14
shimy
1
100
comilioとCloudflare、そして未来へと向けて
oliver_diary
6
450
生成AI × 旅行 LLMを活用した旅行プラン生成・チャットボット
kominet_ava
0
160
20250116_自部署内でAmazon Nova体験会をやってみた話
riz3f7
1
100
2024AWSで個人的にアツかったアップデート
nagisa53
1
110
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
6
54k
なぜfreeeはハブ・アンド・スポーク型の データメッシュアーキテクチャにチャレンジするのか?
shinichiro_joya
2
490
【Oracle Cloud ウェビナー】2025年のセキュリティ脅威を読み解く:リスクに備えるためのレジリエンスとデータ保護
oracle4engineer
PRO
1
100
いま現場PMのあなたが、 経営と向き合うPMになるために 必要なこと、腹をくくること
hiro93n
9
7.7k
Oracle Base Database Service:サービス概要のご紹介
oracle4engineer
PRO
1
16k
東京Ruby会議12 Ruby と Rust と私 / Tokyo RubyKaigi 12 Ruby, Rust and me
eagletmt
3
870
Featured
See All Featured
Navigating Team Friction
lara
183
15k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
98
18k
Optimizing for Happiness
mojombo
376
70k
Done Done
chrislema
182
16k
What's in a price? How to price your products and services
michaelherold
244
12k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.3k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
It's Worth the Effort
3n
183
28k
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
jQuery: Nuts, Bolts and Bling
dougneiner
62
7.6k
A Tale of Four Properties
chriscoyier
157
23k
Transcript
None
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for
Two-Tower Model EC Data Dev / Data Scientists Dan Chen
Dan LINE Taiwan EC Dev - Data Scientis Work Experience
Side Project
01 02 03 04 Evaluation Framework Offline & Online Evaluation
LLM on Recommendation What is Trustworthy 05 Q&A CONTENT
Why it’s so important 01 What is Trustworthy
Element of trustworthy 特點項目文字 特點項目 Trustworthy 特點項目文字 特點項目 特點項目文字 特點項目
Four Perspective 特點項目文字 特點項目 Trustworthy Recommendation 特點項目文字 特點項目 特點項目文字 特點項目
Data Preparation Data Representation Recommendation Generation Performance Evaluation
How to Correctly Evaluate AI 02 Evaluation Framework
Two - Stage Recommendation system Brickmaster Scalable Scenario-wise KPI -
Oriented Trustworthy
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to Correctly Evaluate AI 03 Offline & Online Evaluation
Key point to show how your algorithms can contribute to
your business Offline Evaluation
Key point to show how your algorithms can contribute to
your business Online Evaluation
Avoid pitfalls In Practice If experiment isn’t’ significant ?? Sample
ratio mismatch ?? Novelty effect ?? Key point to show how your algorithms can contribute to your business A/B test
Case – EC Shop recommendation
04 LLM On Recommendation
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Evaluate & Challenge 05 Conclusion
Conclusion Business Value OpenAI, Claude, Gemini XGBoost or OpenSource 來源:https://zh.wikipedia.org/zh-
tw/%E7%BE%8E%E5%9C%8B%E9%9A%8A%E9%95%B72%EF%BC%9A%E9%85%B7%E5%AF%9 2%E6%88%B0%E5%A3%AB 來源:https://images.app.goo.gl/HCygtJVtoPaU2KgX6
Conclusion & Challenge 1. Data Quality 2. Multiple – Metrics
evaluation 3. Conduct A/B test Experiment 4. Human Perception Evaluation Challenge
Q&A 聯絡資訊 (Linkedin – Dan Chen)
None
None