Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Enhanced EC Recommendations: Trustworthy Valida...
Search
LINE Developers Taiwan
PRO
September 23, 2024
Technology
0
66
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for Two-Tower Model
Event: iThome Hello World Dev Conference
Speaker: Dan Chen
LINE Developers Taiwan
PRO
September 23, 2024
Tweet
Share
More Decks by LINE Developers Taiwan
See All by LINE Developers Taiwan
Live Activities in LINE
line_developers_tw
PRO
0
9
Neumorphism x Liquid Glass
line_developers_tw
PRO
0
10
猜你喜歡 – 打造高度擴展的個人化電商推薦
line_developers_tw
PRO
0
22
打造新電商搜尋體驗- 搜尋意圖辨識
line_developers_tw
PRO
0
7
比價群組
line_developers_tw
PRO
0
11
從混亂到優雅,讓專案不再失控:ATDD 與 Clean Architecture 的後端實戰之路
line_developers_tw
PRO
0
10
2049智能共存:透過LINE Bot Agent迎接後人類時代
line_developers_tw
PRO
0
40
菸酒生在 LINE Taiwan 的後端雙刀流
line_developers_tw
PRO
0
1.4k
讓測試不再 BB! 從 BDD 到 CI/CD, 不靠人力也能 MVP
line_developers_tw
PRO
0
1.5k
Other Decks in Technology
See All in Technology
株式会社ログラス - 会社説明資料【エンジニア】/ Loglass Engineer
loglass2019
4
65k
プラットフォーム転換期におけるGitHub Copilot活用〜Coding agentがそれを加速するか〜 / Leveraging GitHub Copilot During Platform Transition Periods
aeonpeople
1
230
スマートファクトリーの第一歩 〜AWSマネージドサービスで 実現する予知保全と生成AI活用まで
ganota
2
310
DroidKaigi 2025 Androidエンジニアとしてのキャリア
mhidaka
2
380
テストを軸にした生き残り術
kworkdev
PRO
0
210
AI時代を生き抜くエンジニアキャリアの築き方 (AI-Native 時代、エンジニアという道は 「最大の挑戦の場」となる) / Building an Engineering Career to Thrive in the Age of AI (In the AI-Native Era, the Path of Engineering Becomes the Ultimate Arena of Challenge)
jeongjaesoon
0
240
実践!カスタムインストラクション&スラッシュコマンド
puku0x
0
520
共有と分離 - Compose Multiplatform "本番導入" の設計指針
error96num
2
1.1k
CDK CLIで使ってたあの機能、CDK Toolkit Libraryではどうやるの?
smt7174
4
190
Autonomous Database - Dedicated 技術詳細 / adb-d_technical_detail_jp
oracle4engineer
PRO
4
10k
Modern Linux
oracle4engineer
PRO
0
160
Rustから学ぶ 非同期処理の仕組み
skanehira
1
150
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
Practical Orchestrator
shlominoach
190
11k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.7k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
RailsConf 2023
tenderlove
30
1.2k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Unsuck your backbone
ammeep
671
58k
Code Review Best Practice
trishagee
71
19k
Transcript
None
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for
Two-Tower Model EC Data Dev / Data Scientists Dan Chen
Dan LINE Taiwan EC Dev - Data Scientis Work Experience
Side Project
01 02 03 04 Evaluation Framework Offline & Online Evaluation
LLM on Recommendation What is Trustworthy 05 Q&A CONTENT
Why it’s so important 01 What is Trustworthy
Element of trustworthy 特點項目文字 特點項目 Trustworthy 特點項目文字 特點項目 特點項目文字 特點項目
Four Perspective 特點項目文字 特點項目 Trustworthy Recommendation 特點項目文字 特點項目 特點項目文字 特點項目
Data Preparation Data Representation Recommendation Generation Performance Evaluation
How to Correctly Evaluate AI 02 Evaluation Framework
Two - Stage Recommendation system Brickmaster Scalable Scenario-wise KPI -
Oriented Trustworthy
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to Correctly Evaluate AI 03 Offline & Online Evaluation
Key point to show how your algorithms can contribute to
your business Offline Evaluation
Key point to show how your algorithms can contribute to
your business Online Evaluation
Avoid pitfalls In Practice If experiment isn’t’ significant ?? Sample
ratio mismatch ?? Novelty effect ?? Key point to show how your algorithms can contribute to your business A/B test
Case – EC Shop recommendation
04 LLM On Recommendation
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Evaluate & Challenge 05 Conclusion
Conclusion Business Value OpenAI, Claude, Gemini XGBoost or OpenSource 來源:https://zh.wikipedia.org/zh-
tw/%E7%BE%8E%E5%9C%8B%E9%9A%8A%E9%95%B72%EF%BC%9A%E9%85%B7%E5%AF%9 2%E6%88%B0%E5%A3%AB 來源:https://images.app.goo.gl/HCygtJVtoPaU2KgX6
Conclusion & Challenge 1. Data Quality 2. Multiple – Metrics
evaluation 3. Conduct A/B test Experiment 4. Human Perception Evaluation Challenge
Q&A 聯絡資訊 (Linkedin – Dan Chen)
None
None