Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
コンペティションから見るAI創薬/AI drug discovery in the view ...
Search
m_mochizuki
March 18, 2019
Research
2
1.5k
コンペティションから見るAI創薬/AI drug discovery in the view of competitions
日本オミックス医学会シンポジウム 発表資料
場所: 東京医科歯科大学
日付: 2019/3/18
2018/3/20 誤記修正
2018/3/21 誤記修正
m_mochizuki
March 18, 2019
Tweet
Share
More Decks by m_mochizuki
See All by m_mochizuki
SIGNATE: 日本取引所グループ ファンダメンタルズ分析チャレンジ 1位解法 / the 1st place solution of JPX Fundamentals Analysis Challenge on SIGNATE
m_mochizuki
4
12k
SIGNATE: 日本取引所グループ ファンダメンタルズ分析チャレンジ 暫定1位解法 / the provisional 1st place solution of JPX Fundamentals Analysis Challenge on SIGNATE
m_mochizuki
3
9.4k
MD-DSC研究会講演資料:『機械学習コンペティションの実際とその意義』/ Practice on ML competition and its significance
m_mochizuki
1
1.2k
Other Decks in Research
See All in Research
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
140
IMC の細かすぎる話 2025
smly
2
580
能動適応的実験計画
masakat0
2
780
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
550
【緊急警告】日本の未来設計図 ~沈没か、再生か。国民と断行するラストチャンス~
yuutakasan
0
150
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
820
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
100
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
300
「エージェントって何?」から「実際の開発現場で役立つ考え方やベストプラクティス」まで
mickey_kubo
0
140
2025年度 生成AIの使い方/接し方
hkefka385
1
770
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
150
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
180
Featured
See All Featured
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
How to train your dragon (web standard)
notwaldorf
96
6.2k
The Invisible Side of Design
smashingmag
301
51k
Thoughts on Productivity
jonyablonski
69
4.8k
Building an army of robots
kneath
306
46k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
Building Adaptive Systems
keathley
43
2.7k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Transcript
a I ( M A M89 :) 3 /21 1
/ 0/ ) ) A c
s ( 21 1- 40 z ( u 76 6
7 ) ) h o 7M M AI( : 7 r a ( k c 7 i
3 IS o J P 123 32 0 J P
T 0 J P T 0 J P T 6 n 0 J P T 4 DJ PG C A 7E5 D4J A C C eB E5
P GI gGI M ci 06?5:
0 65A 4? 5 B C 84 6 76 .?4 8 11ae h M ci 2 3 gM N M ci g T M
6 AI= +.9<*!%;7BG =?4D +.1:/"(&#*
5C0 A, "(&$ = %&' )6F5C=? >@8E3 -23
<; .%7 FC*
'4 <;p53L. + '&(AE!1IBM) DK5=(FC*'40 BH1G .%7D/:36I (-"8$) .%7>@1G JD ↑ # 2?, )9
1
1 0 0 n RAK ) S2 AK K n
g 1 0 Ra Ra 0 5 Q e ( 425 %10/7& (! * , 10/(! $%)+.# # " 425 'Kaggle(063(-
1 n eh a kGn f R / :/ V
Fod eh aFH lm g Sb RHMS A n V . :/ i eh a cS A p 2 / /: / ./: :.
M ,1 42 , 2 , 0 0 9 22
3. n ? n : AC
None
4 1 #)$ ' !%( * $
(Convolutional Neural Network) $ %" & &
1 $)& (" Fingerprint/Descriptor % & (Graph
Convolutional Neural Network) & ! # ' '
n 1 G 6 C n N : Altae-Tran et
al, ACS Cent. Sci.,2017,3(4), pp 283–293
n ( ) P O N B A n I
24 0 2 1 1 Virtual screening… 1 2 3
n N G n K C 967 ( #
&).0 *! "%*@ =1;=>* *(400) 4?:<A5).0 “”* */$, 862?3' +(-OK
7 8 T d fng ] N mi a M
hmi ] C [ Ct ep r a 21 . ? 0 ?9 5 ( ) ) ( )( 02 s y , 9 T u CG ] NaY I
( 7 2 Extended Connectivity Fingerprint Functional Connectivity Fingerprint Topological
Torsions Atom Pairs Fingerprint RDKit Fingerprint Avalon fingerprint !fingerprint (6) 70 Random Forest Extremely Randomized Trees Gradient Boosted Trees Multilayer perceptron Support Vector Regression ! $)%(&' (5) 65 = 30# Elastic Net Pfinal Level 0 Level 1 " # 1 2 ) ):
Fingerprint ECFP FCFP TT AP RDK AVLN F-Stacking RF
0.848 0.855 0.816 0.686 0.652 0.722 0.892 ERT 0.869 0.889 0.844 0.798 0.671 0.768 0.907 GBT 0.852 0.864 0.835 0.808 0.733 0.758 0.891 MLP 0.802 0.777 0.623 0.814 0.651 0.712 0.895 SVR 0.856 0.852 0.688 0.763 0.662 0.693 0.877 L-Stacking 0.890 0.911 0.870 0.881 0.799 0.846 0.930 FL-Stacking Level0 ROC-AUC ) 1 ) (0( 72 n 0 3 0 0
2 ( 7 )1)0 3 5
IMSBIO () ( ) 1 8 1 Univ-shizuoka 1 PFDrug ()Preferred Networks 1 kiharalab 1 1 Graph CNN
1 0
38 5 120 n 0 u ”Taklbe : () :.
00 1Tcn n s T n p w Th cn dg I I “ L ing n r P v T ng D n T t p o y 2 8: : .2 1 2 - // /: 0:
)0 3 6 ( 2 1 n Lel an f
LN b i - b i -/) - n U N gc d - s n D - b i ( 1) -1- P t ( 1) ) vo el an (
)0 37 ( 2 1 n 24 9: 9 0
4 n 1 9 9 56 8 2 3 W 2 9 4 O O O !!!
9 21 n e l ( g n K n
) a )
20 2 3 n 3 t 1 o r ru
2 a i 1 o ru ) 2 l1 ru 1es 2 1 r f K2 n (( h g g K2
1 3 n ( ) ) n : )
X 8 T 9 8. A T 9 8. A
T 9 8. A 0 3 T . 9? A 5 2
( • 9) : / 51) 5 • 1 55
5 2 1:023/ 5