Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Bedrock Knowledge baseを使って今年の上半期のニュースを聞いてみた(リベ...
Search
KMiura
August 27, 2024
0
260
Bedrock Knowledge baseを使って今年の上半期のニュースを聞いてみた (リベンジ編)
2024/8/27 「製造業でも生成AI活用したい!名古屋LLM MeetUp#2」
https://kinto-technologies.connpass.com/event/325725/
KMiura
August 27, 2024
Tweet
Share
More Decks by KMiura
See All by KMiura
運用しているアプリケーションのDBのリプレイスをやってみた
miura55
1
1.1k
Amazon Rekognitionを使ったインターホンハック
miura55
0
72
Pythonでルンバをハックしてみた
miura55
0
150
あなたの知らないクラフトビールの世界
miura55
0
330
Storage Browser for Amazon S3を触ってみた + α
miura55
0
200
Cloudflare R2をトリガーにCloudflare Workersを動かしてみた
miura55
0
210
あのボタンでつながるSORACOM
miura55
0
130
Postman Flowsで作るAPI連携LINE Bot
miura55
0
380
Lambdaと共に歩んだAWS
miura55
3
830
Featured
See All Featured
The Cult of Friendly URLs
andyhume
79
6.6k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
How to train your dragon (web standard)
notwaldorf
96
6.2k
Unsuck your backbone
ammeep
671
58k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
GraphQLとの向き合い方2022年版
quramy
49
14k
Code Review Best Practice
trishagee
70
19k
Producing Creativity
orderedlist
PRO
347
40k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.5k
Transcript
Bedrock Knowledge baseを使って今年 の上半期のニュースを聞いてみた (リベンジ編) KMiura(@k_miura_io)
自己紹介 • 三浦 耕生(こうき) • Acallのバックエンドエンジニア • JAWS UG名古屋&神戸 運営
• Cloudflare Meetup名古屋 運営 • 鯱.py 運営 @k_miura_io koki.miura05
このイベントでやったLT覚えてますか?
LTについて今北産業 • Step FunctionsでNews APIを使ってその日のヘッ ドラインニュースをSlackのAPIで投稿するワークフ ロー作った • Slackで投稿するだけではなくAPIのレスポンスログ をS3に溜め込むETL的な機能も用意
• S3に溜め込んだデータをそのままBedrockに使うと いう話
S3のデータをKnowledgebaseにできる 仕組みがあるらしい • Amazon BedrockのKnowledgebaseを使うとS3をソースにフルマネージドなRAGを実現 できそう • 調べてみると外部のベクトルデータベースを使う方法があるが、わざわざ用意しなくても OpenSearch Serverlessを使うことができる(むしろ今のところそれが推奨っぽい)
実際にデモチャットで確認 • 答えは帰って来るがなんか微妙… • 日付周りが結構弱い
どうすれば精度上がりそう? • 読み込ませたソースになっているファイルがAPIのレスポンスをそのまま保存して いるだけなのでCSVとかで整形したほうがいいかも • ソースごとにメタデータ情報を記載したjsonファイルをバケットに足すことで応答精 度が上がるそう 今回はこれを試してリベンジする話
データ生成のフロー • すでに存在するAPIのレスポンスログを溜め込むバケットにデータが保存されたこ とをトリガーでKnowledge Base用のデータを整形 • SQSに流し込んでLambdaでCSVとmetadataのjsonの生成を自動化 • ベクトルデータベースにはPineconeを使用(OpenSearchは高すぎるw)
生成したデータフォーマット
metadata { "metadataAttributes":{ ”year":”2024" } }
それっぽい返答が 出るようになった
上半期のニュースも 抽出できた
DEMO
まとめ • BedrockのKnowledge Baseに対応したデータフォーマットに変換するこ とでAWS上で手軽にRAGを実現できる • metadataを活用することでより適切なデータを取得できた • 多少コードが書けるとデータ整形の自動化がだいぶ楽になる
宣伝 https://bit.ly/4dBnLIf
END