Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
統計的学習理論の基礎 I
Search
Masanari Kimura
December 11, 2020
Research
3
550
統計的学習理論の基礎 I
Masanari Kimura
December 11, 2020
Tweet
Share
More Decks by Masanari Kimura
See All by Masanari Kimura
Equivalence of Geodesics and Importance Weighting from the Perspective of Information Geometry
mkimura
0
330
機械学習における重要度重み付けとその応用
mkimura
3
3.1k
Paper Intro: Human Rademacher Complexity
mkimura
0
180
On the principle of Invariant Risk Minimization
mkimura
0
350
論文紹介:Clustering with Bregman Divergences: an Asymptotic Analysis
mkimura
0
580
Generalization Bounds for Set-to-Set Matching with Negative Sampling
mkimura
0
170
論文紹介:On the Importance of Gradients for Detecting Distributional Shifts in the Wild
mkimura
2
790
論文紹介:Dangers of Bayesian Model Averaging under Covariate Shift
mkimura
0
350
Information Geometry of Dropout Training
mkimura
0
330
Other Decks in Research
See All in Research
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
190
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
120
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
270
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
460
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
230
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
1.1k
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
340
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
300
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
330
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
520
20年前に50代だった人たちの今
hysmrk
0
120
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
Featured
See All Featured
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
220
The World Runs on Bad Software
bkeepers
PRO
72
12k
Writing Fast Ruby
sferik
630
62k
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
190
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
420
Believing is Seeing
oripsolob
1
29
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
42
What the history of the web can teach us about the future of AI
inesmontani
PRO
0
400
A Tale of Four Properties
chriscoyier
162
24k
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.8k
Building Flexible Design Systems
yeseniaperezcruz
330
40k
Transcript
CompML 統計的学習理論の基礎 I Masanari Kimura (@machinery81)
CompML TL;DR • 統計的学習理論の基礎的な事項のまとめ • 第一回は以下のトピックについて: • 種々の収束概念 • 確率収束
• 概収束 • UCEP property • ASCEP property • UCEM property • PAC Learning 2
CompML Uniform Convergence
CompML (, ):可測空間,:確率測度 からi.i.d.に生成された! , … , " から計算される ∈
の経験確率 + ; " = ## ∈ = 1 1 #$! " % # 気になるのは, • + (; " )がちゃんと()に収束するのか? • もしそうならば,どのように収束するのか? 4 経験確率(Empirical Probability)
CompML 確率収束(Converges in Probability) 定義.ある > 0について ! % ;
! − () > → 0 ( → ∞) のとき, % (; ! )は()に確率収束するという. 同値な表現として, ∀, > 0, ∃" , > 0 . . ! % ; ! − > ≤ ∀ ≥ "
CompML 概収束(Converges almost surely) 定義.経験確率について # % ; ! →
→ ∞ = 1 となるとき, % (; ! )は()に概収束するという. 概収束は確率収束より強い: % ; ! $.&. () ⟹ % (; ! ) → ' ()
CompML 経験確率は真の確率に確率収束する (証明)インジケータ関数( ()はBernoulli過程とみなせる: ( = 1 = 従って,Chernoffの不等式から !
% ; ! − () > ≤ 2 exp −2) が得られる.従って, → ∞で ! % ; ! − () > → 0であるので, % (; ! )は()に確率収束することが証明された. □ 実はもっと強く,経験確率は真の確率に概収束する.
CompML UCEP; Uniform Convergence of Empirical Probabilities 単一のではなく,その集合 ⊂ を考える.
定義.あるについて, ! sup (∈ % − () > → 0 ( → 0) が成り立つとき,はUCEP propertyを持つという.
CompML ASCEP; Almost Sure Convergence of Empirical Probabilities 定義.あるについて, #
sup (∈ % ! − () → 0 → ∞ = 1 が成り立つとき,はASCEP propertyを持つという.
CompML UCEM; Uniform Convergence of Empirical Means 確率変数についての関数の経験平均を以下のように書く: F ()
= 1 I ,-. ! , 定義.ある関数クラスℱについて, ! sup /∈ℱ F − > → 0 ( → 0) が成り立つとき,ℱはUCEM propertyを持つという.
CompML PAC Learning
CompML Learning Concepts • 未知の関数または概念を学習するとはどういうことか? • より強くいうと,汎化するとはどういうことか? • 学習理論における基本的なパーツは ◦
集合 ◦ 加法族 ◦ 可測空間(, )の確率測度のクラス ◦ conceptクラス ⊂ または関数クラスℱ
CompML Concept Learning 目的は,観測. , … , ! に基づいて未知のtarget concept
∈ を学習すること. • 各, について,それがに含まれるかどうかを1 (, )で表す(オラクル) • これらのペアから,写像の族(アルゴリズム)を考える: ! : × 0,1 ! → このアルゴリズムによって生成される仮説(hypothesis) ! = ! . , 1 . , … , ! , 1 !
CompML PAC学習可能;Probability Approximately Correct 定義.アルゴリズム! は以下を満たすとき精度でPAC学習可能であるという: sup 1∈2 ! 3
, ! > → 0 ( → 0) ここで3 は仮説とtarget conceptの間の何らかのエラーに当たる. 同値な表現:! は任意の, > 0について,ある" (, )が存在して以下を満た すときPAC学習可能: ! 3 , ! > ≤ , ∀ ≥ "
CompML まとめ • 統計的学習理論の準備として幾つかの基礎的な事項をまとめた • 確率収束,概収束 • PAC学習可能性
CompML 参考文献 • Shalev-Shwartz, S., Ben-David, S. (2014). Understanding Machine
Learning - From Theory to Algorithms.. Cambridge University Press. ISBN: 978-1-10-705713-5 • Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press, 2018.