Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
dbtとリバースETLでデータ連携の複雑さに立ち向かう
Search
Toru Morooka
May 13, 2025
Technology
0
4k
dbtとリバースETLでデータ連携の複雑さに立ち向かう
【技術選定を突き詰める】Online Conference 2025
https://findy.connpass.com/event/349580/
Toru Morooka
May 13, 2025
Tweet
Share
More Decks by Toru Morooka
See All by Toru Morooka
AI時代のエンジニア ~Matz Keynoteに寄せて〜
morookacube
0
73
Other Decks in Technology
See All in Technology
Logik: A Free and Open-source FPGA Toolchain
omasanori
0
190
CloudComposerによる大規模ETL 「制御と実行の分離」の実践
leveragestech
0
190
短期間でRAGシステムを実現 お客様と歩んだ生成AI内製化への道のり
taka0709
1
200
最近読んで良かった本 / Yokohama North Meetup #10
mktakuya
0
1k
OPENLOGI Company Profile for engineer
hr01
1
47k
今のコンピュータ、AI にも Web にも 向いていないので 作り直そう!!
piacerex
0
680
AWSが好きすぎて、41歳でエンジニアになり、AAIを経由してAWSパートナー企業に入った話
yama3133
2
230
ソフトウェア品質を支える テストとレビュー再考 / 吉澤 智美さん
findy_eventslides
1
440
設計は最強のプロンプト - AI時代に武器にすべきスキルとは?-
kenichirokimura
1
180
ソフトウェアエンジニアとデータエンジニアの違い・キャリアチェンジ
mtpooh
1
510
AIエージェントを導入する [ 社内ナレッジ活用編 ] / Implement AI agents
glidenote
1
230
Amazon Q Developer CLIをClaude Codeから使うためのベストプラクティスを考えてみた
dar_kuma_san
0
360
Featured
See All Featured
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Raft: Consensus for Rubyists
vanstee
140
7.2k
What's in a price? How to price your products and services
michaelherold
246
12k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
Product Roadmaps are Hard
iamctodd
PRO
55
11k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
RailsConf 2023
tenderlove
30
1.3k
Transcript
dbtとリバース ETLで データ連携の複雑さに立ち向かう 2025.05.14 #技術選定con_findy エムスリーキャリア株式会社 諸岡 徹(@morooka_cube)
自己紹介 諸岡 徹(@morooka_cube, もろーか) エムスリーキャリア株式会社 Webアプリケーションエンジニア / チームリーダー 医療従事者・医療機関向け Webサービスの開発チームで
技術戦略や開発生産性の向上を担当
None
エムスリーキャリアのエンジニアリング 営業基幹システム (Salesforce) 医療従事者向け Webサービス (Ruby on Rails, etc.) ❗
システム間のデータ連携が 事業展開を支えるコア技術 となっている 医療機関・ 一般企業向け SaaS (Ruby on Rails, etc.)
複雑なデータ連携 📄 リソース型データ • 求人情報, 求職者情報など • マスタデータとして各システムで更新・参照 📅 イベント型データ
• 求職者からの求人問い合わせ , 選考の進捗状況など • 日々の業務活動で発生し、リアルタイムな連携が必要 本発表では リソース型データ の連携に焦点
従来の連携方法 …営業基幹システム→Webアプリケーションの場合 営業基幹システム (Salesforce) Webアプリケーション 連携バッチをRakeタスク(Ruby)で実装し、Cronでスケジュール実行 ⚙ データ抽出 →変換→格納 (Rakeタスク)
💾 アプリDB (MySQL, etc.)
組織横断した課題に 😣 個々の開発チームでペインが発生、 垣根を越えて改善の取り組みを始める ことに Web開発チーム 基幹システム開発チーム
抱えていたペイン (Webエンジニア視点) 営業基幹システムのドメイン知識が必要 • 複雑なデータ構造の理解、営業部門のプロセス理解が必要 🍝 Webアプリケーション用ロジックと営業基幹システム用ロジックの混在 • Webアプリのコードベースに
基幹システムのドメインが染み出し 、保守性が悪化 📃 手続き的なデータ変換ロジック • SQLで宣言的に書きたい
抱えていたペイン (基幹システムエンジニア視点) 🔀 データの参照関係が不明瞭 • 各データがWebアプリケーションでどのように参照されているかわからない • 項目・オブジェクトの変更削除による影響範囲の把握が困難 • 変更・クリーンアップが進まず
保守性が低下
データ基盤 データ基盤活用の機運 事業横断的なデータ分析を目的に データ基盤構築プ ロジェクトが立ち上がる 基幹システム内の主要データが BigQueryに蓄積され た状態に 参考:https://findy-tools.io/products/trocco/17/48 💡
データ基盤をシステム間データ連携のハブとし て活用できないだろうか? 営業基幹システム (Salesforce) ⚙ データ転送ツール (TROCCO) 💾 アプリDB (MySQL, etc.) データレイク (BigQuery)
データ基盤 新しい連携方法 …dbtとリバースETLの導入 TROCCOによるdbtジョブでデータ変換し、TROCCOのリバース ETLでアプリDBに転送 ⚙リバースETL TROCCO転送ジョブ 💾 アプリDB (MySQL,
etc.) ⚙データ変換 TROCCO dbtジョブ データマート (BigQuery) データレイク (BigQuery) 営業基幹システ ム (Salesforce)
新しい連携方法 …リバースETLとdbtの導入 ⚙ データ変換 (TROCCO dbtジョブ) • 生データをWebアプリでの活用に適した形式に変換 • dbtによってデータ変換ロジックを
SQLベースで実装 • TROCCOによってdbtによる変換処理を定期実行し、データマートを構築 ⚙データ変換 TROCCO dbtジョブ データレイク (BigQuery) データマート (BigQuery)
新しい連携方法 …リバースETLとdbtの導入 ⚙ データマート→アプリDBへの転送 (TROCCO転送ジョブ) • TROCCOの転送ジョブを利用 • dbtで作成したデータマートからアプリ DBへデータを転送
• 転送方式:要件に応じて全件洗い替え (Truncate & Insert) や差分更新 (Upsert) を選択 ⚙リバースETL ※ TROCCO転送ジョブ データマート (BigQuery) 💾 アプリDB (MySQL, etc.) ※業務システム →データ基盤のETL(Extract, Transform, Load)とは逆向きであることから
導入メリット①: dbtによる開発プロセス改善 🚀 モダンなデータ開発体験 • SQLベースの実装 により手続き的なスクリプト実装の苦しみから解放! • マクロ機能 で繰り返しロジックの共通化
• Gitによるバージョン管理運用 で、変更履歴の追跡やコードレビューが容易に 🧠 ドメイン知識の集約 • 基幹システムのドメイン由来の変換ルールを dbtに集約し、Webアプリから分離 • Webエンジニアは変換後データ構造の理解 に集中できるように
導入メリット②:データ変換の信頼性向上 🔀 データリネージュによる参照関係の可視化 • どのデータがどのように変換されどのテーブルに出力されるか • 基幹システム側のデータ項目変更時の 影響調査が容易に • dbtロジック修正の際も見通しよく開発・保守
できる
(今後の展望)チーム横断したデータ基盤作りの促進 dbtでの開発体験がとても良かったので、もっと広めていきたい! 🤝 データマート構築の役割分担 • 基幹エンジニア:全社共通データマート 構築を担当(ドメイン知識を集約) • Webエンジニア:アプリ専用データマート 構築を担当
(共通マートを活用) ⚙ dbtなら同じコードベース上で実現できる • 適切に役割分担しつつ、 チーム横断でのデータ活用を促進 していく 💪 挑戦はまだ始まったばかり!
まとめ 🔥 dbtとリバースETLでデータ連携の複雑さに立ち向かうことができた! • 複雑なデータ連携のペインと、データ基盤を用いた改善のアプローチ • dbtの素晴らしい開発体験と、それが拓くチーム横断の可能性 🍕 懇親会参加します •
データ連携, 基盤開発, 組織づくり…熱く語りましょう • お気軽にお声がけください 😊
Appendix リバースETLを使う際のデータ設計の注意点 主キーの同一性はデータ発生源または dbtで保証すること 全件洗い替え (Truncate & Insert) するテーブルの主キーが auto_incrementなInteger値だと…
• 外部キー制約の不整合 :参照先レコードが削除 →再挿入されると主キーが再採番され、既存 の外部キー参照が切れてしまう • INSERT順依存のバグ :リバースETL側でINSERT順が保証されているとは限らない