Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
実務(CTR予測)と機械学習コンペの比較
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
mrkmakr
November 13, 2020
Technology
4
3.3k
実務(CTR予測)と機械学習コンペの比較
Discovery DataScience Meet up (DsDS) #1 での発表資料
mrkmakr
November 13, 2020
Tweet
Share
Other Decks in Technology
See All in Technology
AI推進者の視点で見る、Bill OneのAI活用の今
sansantech
PRO
2
280
AI開発をスケールさせるデータ中心の仕組みづくり
kzykmyzw
0
190
Data Hubグループ 紹介資料
sansan33
PRO
0
2.7k
Amazon ElastiCacheのコスト最適化を考える/Elasticache Cost Optimization
quiver
0
310
書籍執筆での生成AIの活用
sat
PRO
1
230
2人で作ったAIダッシュボードが、開発組織の次の一手を照らした話― Cursor × SpecKit × 可視化の実践 ― Qiita AI Summit
noalisaai
1
300
生成AI時代にこそ求められるSRE / SRE for Gen AI era
ymotongpoo
3
300
Riverpod3.xで実現する実践的UI実装
fumiyasac0921
2
360
Tebiki Engineering Team Deck
tebiki
0
23k
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
1
260
3分でわかる!新機能 AWS Transform custom
sato4mi
1
270
Regional_NAT_Gatewayについて_basicとの違い_試した内容スケールアウト_インについて_IPv6_dual_networkでの使い分けなど.pdf
cloudevcode
1
190
Featured
See All Featured
Building AI with AI
inesmontani
PRO
1
660
Scaling GitHub
holman
464
140k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.8k
Design in an AI World
tapps
0
140
Documentation Writing (for coders)
carmenintech
77
5.2k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
740
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
110
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Transcript
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. 2020年11⽉13⽇
ヤフー株式会社 村上 晃 実務(CTR予測)と機械学習コンペの⽐較 コンペで学んで役に⽴った/⽴たなかったこと
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. 注意事項
2 • ຊͷ͜ͷൃදɼݱ৬ݱ෦ॺͰͷ ݸਓతܦݧʹجͮ͘ͷͰ͢ɽ • ओޠ͕େ͖ͦ͏ͳൃݴΛͯ͠͠·ͬͨ߹ɼ ͦΕݴ͍ؒҧ͍ͩͱࢥ͍͚ͬͯͨͩΔͱ ͍Ͱ͢ɽ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. TL;DR
3 • ࠂͷΫϦοΫ༧ଌਫ਼͕ऩӹʹ݁ͼͭ͘ ࣮λεΫɽ • ,BHHMFͰΑ͘ΘΕΔਫ਼վળํ๏ͱͯ͠ɼ ౷ܭྔલͷϩάΛ༻ͨ͠ಛྔͳͲ͕͋Δɽ • ࣮ͷࠂΫϦοΫ༧ଌͰͦ͏͍͏ಛྔΛ ༻͢Δͱɼਫ਼্͕ΔͷͷΦϯϥΠϯਪ ڥඋ͕େมͰɼԠ༻͠ਏ͍ɽ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. ⾃⼰紹介
4 ࢯ໊ ଜ্ ߊ ʢUXJUUFS!NSLNBLS ,BHHMF!NSLNBLSʣ ग़ ژɽ ܦྺ ژେใֶݚڀՊͷੜدΓͷϥϘग़ ݱॴଐ Ϡϑʔגࣜձࣾ αΠΤϯε౷ׅຊ෦ʢ̎̌̍̕৽ଔೖࣾʣ ࠂؔͷ͜ͱΛ͍ͬͯΔ෦ॺͰɼػցֶशίϯϙʔωϯτͷ ։ൃɾݕূΛߦͳ͍ͬͯ·͢ɽ ࣾಉձ ࣾͷ,BHHMFಉձʹೖ͓ͬͯΓɼղ๏ڞ༗ձίϯϖΛߦͳ͍ͬͯ·͢
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. コンペ戦績
5 ,BHHMF DPNQFUJUJPONBTUFS /'-#JH%BUB#PXMͰιϩۚ BUNBDVQҐ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. agenda
6 :+Ͱͷࠂ৴ͷʢಛʹ$53༧ଌʣ ࣅͨσʔλʹରͯ͠,BHHMFͰΑ͘ΘΕΔख๏ ,BHHMFͰͷख๏$53༧ଌͷ࣮Ͱ༗ޮ͔ ,BHHMFͰֶΜཱͩͬͨ͜ͱཱͨͳ͔ͬͨ͜ͱ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. YJでの運⽤型広告配信
7 • ചΓ্͕͛େ͖͍ • ԯԁ EBZʢ*3ΑΓʣ • جຊతʹDMJDL՝ۚ • ظऩӹ͕ߴ͍ࠂ͕දࣔ͞ΕΔ 運用型広告 1 運用型広告 2 ظऩӹ ΫϦοΫ୯Ձ º $53ʢΫϦοΫ֬ʣ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. CTR予測のデータ形式とタスク
8 • 6TFSº *UFNº 5JNFΛݩʹɼ $MJDL͞ΕΔ͔Ͳ͏͔Λ༧ଌ͢Δ ೋྨʢ֬༧ଌʣ • $BSEJOBMJUZʢVOJRVFʣ ͔ͳΓେ͖͍ɼ • ݄ؒΞΫςΟϒϢʔβʔ ̍ԯऑ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. CTR予測精度が向上すると
9 • ਅʹظऩӹ͕ߴ͍ࠂΛग़͢͜ͱ͕Ͱ͖ΔΑ͏ʹͳΔɽ • ऩӹΞοϓ͕ظͰ͖Δ • ཧ্$53༧ଌ͕ᘳͳΒऩӹ࠷େԽ • ˋͷऩӹ্ͰֹۚͰݟΔͱ͔ͳΓେ͖͍ • վળͰ ສԁ EBZ 精度向上の追求に慣れているkagglerが 活躍しやすい実務タスクでは︖
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. agenda
10 :+Ͱͷࠂ৴ͷʢಛʹ$53༧ଌʣ ࣅͨσʔλʹରͯ͠,BHHMFͰΑ͘ΘΕΔख๏ ,BHHMFͰͷख๏$53༧ଌͷ࣮Ͱ༗ޮ͔ ,BHHMFͰֶΜཱͩͬͨ͜ͱཱͨͳ͔ͬͨ͜ͱ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. ユーザー
× アイテム × 時系列 コンペ 11 • 5BMLJOHEBUB • Ϣʔβʔ͕ΞϓϦͷࠂΛΫϦοΫͨ͠ޙɼΞϓϦΛ ࣮ࡍʹμϯϩʔυ͢Δ͔Ͳ͏͔Λ༧ଌ͢Δίϯϖ • %4# • ΞϓϦͷϓϨΠཤྺΛݩʹɼͲΕ͙Β͍ͷείΞΛ औΔ͜ͱ͕Ͱ͖Δ͔Λ༧ଌ͢Δίϯϖ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. 集約特徴量
12 • ΧςΰϦʔ͝ͱͷ౷ܭྔ • લʹϩάʹݱΕͨճʢDPVOUFODPEJOHʣ • λʔήοτͷ࣮ʢUBSHFUFODPEJOHʣ • ৭ΜͳBEΛΫϦοΫ͢ΔVTFS͔ʢVOJRVFDPVOUʣ • ಛఆͷࠂΛԿݟ͍ͯΔ͔ʢ݅Λ͚ͭͨDPVOU FODPEJOHʣ ू • ࢄදݱ • ڞىߦྻͷજࡏม • ࣌ܥྻΛจষͱ ݟཱͯͨXPSEWFD
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. 直近のログを利⽤した特徴量
13 • Ұఆظؒͷ౷ܭྔʢલͷϩάΛؚΉूಛྔʣ • લ̍̌ͷؒͷΞΫηεճ • લ̑ؒͰݟͨࠂͷछྨ • TIJGUಛྔ • ۙͷΞΫηε͔Βܦաͨ࣌ؒ͠ • ۙʹΫϦοΫͨ͠ࠂͱಉ͡ࠂ͔Ͳ͏͔
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. ⼿法まとめ
14 • ूಛྔ • ౷ܭྔ • ࢄදݱ • ۙͷϩάΛར༻ͨ͠ಛྔ • ۙͷϩάͱͷࠩ • ۙͷϩάͦͷͷ • ಛྔΛࣗͰ࡞ͤͣʹ3//ʹͤΔέʔε
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. agenda
15 :+Ͱͷࠂ৴ͷʢಛʹ$53༧ଌʣ ࣅͨσʔλʹରͯ͠,BHHMFͰΑ͘ΘΕΔख๏ ,BHHMFͰͷख๏$53༧ଌͷ࣮Ͱ༗ޮ͔ ,BHHMFͰֶΜཱͩͬͨ͜ͱཱͨͳ͔ͬͨ͜ͱ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. Kaggleの解法はCTR予測の実務で使えるか
16 • ͜͜·ͰͰݟ͖ͯͨಛྔΛ ࠂ৴࣌ͷ$53༧ଌʹ͑Δ͔ߟ͑ͯΈΔ • ࠂ৴Ͱ࣮ࡍʹࠓ༻͍ͯ͠Δͷ͔ • ਫ਼ɾऩӹ͕ຊʹվળ͢Δͷ͔ • ࣮ࡍʹࠂ৴Ͱ༻͢Δ߹ͷίετͳͲ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. 集約特徴量(1/2)
17 • ৴࣌ͷ$53༧ଌͰͷ༻ঢ়گ • গྔ͕ͩ༻͍ͯ͠Δ • FYʣ࣮$53UBSHFUFODPEJOH • ਫ਼ɾऩӹͷӨڹ • ࣮$53ͳ͠Ͱੜ͖͍͚ͯͳ͍͙Β͍ʹޮ͍͍ͯΔ • ଞͷ࣮ʢࠂͷఏࣔසͳͲʣͦͦ͜͜ޮ͍͍ͯΔ 精度・収益向上の役には⽴つ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. 集約特徴量を使った場合の広告配信の流れ
18 Ϣʔβʔ ࠂબ༻αʔόʔ %# 6. ロギング 4. 広告 1. アクセス情報 3. 特徴量 2. ID 5. ロギング ಛྔఏڙ༻αʔόʔ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. 集約特徴量を使った場合の広告配信の流れ
19 Ϣʔβʔ ࠂબ༻αʔόʔ %# ಛྔఏڙ༻αʔόʔ 6. ロギング 4. 広告 1. アクセス情報 3. 特徴量 2. ID 5. ロギング ूܭ༻αʔόʔ b. 集計結果読み込み a. 集計
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. 増強・改修が必要な箇所
20 Ϣʔβʔ ࠂબ༻αʔόʔ %# ಛྔఏڙ༻αʔόʔ 6. ロギング 4. 広告 1. アクセス情報 3. 特徴量 2. ID 5. ロギング ूܭ༻αʔόʔ b. 集計結果読み込み a. 集計
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. 増強・改修が必要な箇所
21 Ϣʔβʔ ࠂબ༻αʔόʔ %# ಛྔఏڙ༻αʔόʔ 6. ロギング 4. 広告 1. アクセス情報 3. 特徴量 2. ID 5. ロギング ूܭ༻αʔόʔ b. 集計結果読み込み a. 集計
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. 集約特徴量(2/2)
22 • ৽͍͠ूಛྔΛ৴Ͱ༻͢Δͷʹඞཁͳཁૉ • ूܭΫΤϦͷ࡞ͱอकɾӡ༻ • ֤छαʔόʔͷ૿ڧ • ಛʹಛྔఏڙ༻αʔόʔ • ΦϑϥΠϯͰ༗༻ੑ͕ࣔ͞Ε͔ͯΒ࣮ࡍͷࠂ৴Ͱࢼ͢·Ͱʹ͔͔Δظؒ • খنͳϥΠϒςετ·Ͱ ϲ݄ • શ৴Ͱ༻Ͱ͖ΔΑ͏ʹͳΔ·Ͱ΄Ͳ͔͔Δ༷ 精度は上がるが,オンライン推論環境構築がかなり⼤変で, 実際の広告配信で試すには時間がかかる
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. 直近のログ利⽤した特徴量(1/2)
23 • ৴࣌ͷ$53༧ଌͰͷ༻ঢ়گ • ͔ᷮʹ༻͍ͯ͠Δ͕ಋೖͷқߴ͘ɼίετ͔͔Δɽ • ݟ߹͏ऩӹੑ্͕ඞཁ • ਫ਼ɾऩӹͷӨڹ • ͳͯ͘ͳΒͳ͍ͱ͍͏΄ͲͰͳ͍͕ͦͦ͜͜ޮ͍͍ͯΔ • ʢಋೖϋʔυϧߴ͍ͷ͋ͬͯ͋·Γ୳ࡧ͞Εͯͳ͍ҹʣ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. 直近のログが必要な特徴量(2/2)
24 • ৽͍͠ಛྔΛՃ͍ͯͨ͘͠Ίʹඞཁͳཁૉ ʢूಛྔͰඞཁͳͷҎ֎ʣ • ϦΞϧλΠϜूܭ༻ͷαʔόʔͷ૿ڧ • ωοτϫʔΫͷ૿ڧ • ΦϑϥΠϯͰ༗༻ੑ͕ࣔ͞Ε͔ͯΒ࣮ࡍͷࠂ৴Ͱࢼ͢·Ͱʹ ͔͔Δظؒ • খنͳϥΠϒςετ·Ͱ ϲ݄ • શ৴Ͱ༻Ͱ͖ΔΑ͏ʹͳΔ·Ͱ̍΄Ͳ͔͔Δ༷ • খنͳϥΠϒςετͰऩӹ্͕͕̍ΔͱΘ͔͍ͬͯΔ͕ ϦιʔεͷͰϝΠϯԽ͞Εͯͳ͍ಛྔ͋Δ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. 直近のログ
+ NN 25 • $53༧ଌͰ͍ͬͯΔ͔ʁ • ͍͑ͯͳ͍ • ਫ਼্͕Δͷ͔ • ΦϑϥΠϯධՁ͕վળ͢Δ͜ͱͷ֬ೝͰ͖͍ͯΔ͕ɼ ϥΠϒςετͰ͖͍ͯͳ͍ • $53༧ଌؔͷจͰɼਫ਼͕վળͯ͠ऩӹ্͕͕Δ͜ ͱใࠂ͞Ε͍ͯΔ • "MJCBCB࣮ࡍͷࠂ৴Ͱ3// BUUFOUJPOϞσ ϧΛ༻͓ͯ͠Γɼ.-1ͱൺͯऩӹ ʢ (VPSVJ ;IPVFUBMʣ • ৴Ͱ༻͢ΔʹԿ͕ඞཁ͔ • ۙͷಛྔ͕͑ΔΑ͏ʹ͢Δ • ਪαʔόʔͷ૿ڧ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. ⼿法とハードル
26 手法 考えられる特徴量の例 配信で試すまでにかかる 期間 ハードル 集約特徴量 • クリックしやすいユーザー か? • 幅広い年齢層がクリックす る広告か? • あるユーザーが絶対クリック しない広告のカテゴリは? • 2ヶ月ぐらい • 全trafficで使うなら半年 • 事前に集計して 貯める必要あり • 推論時に素早く引 ける必要あり 直前のログを 使用した特徴量 • 直前に提示された広告は? • 直前にクリックした広告のカ テゴリは? • 3ヶ月ぐらい • 全trafficで使うなら1年 • ↑と同様 • 直前の行動を即 特徴量に反映で きるようにする必 要あり
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. 何だったら気軽に試せるか
27 • طʹϩάʹམ͍ͪͯΔ͕$53༧ଌϞσϧʹ ͍ͬͯͳ͍Α͏ͳಛྔʢେ୳ࡧࡁΈʣ • Ϟσϧͷ܇࿅࣌ʹ͔ؔ͠Θͬͯ͜ͳ͍Α͏ͳͷ • TBNQMFXFJHIU • ֤छϋΠύϥ • ଛࣦؔ • ༻͢Δσʔλ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. Kaggleコンペとの⽐較
28 • ϩʔΧϧͰܭࢉͰ͖ͳ͍ࢦඪʢऩӹʣ͕ QVCMJD QSJWBUFͷNFUSJDʹͳ͍ͬͯΔ • ूܭ͕ඞཁͳಛྔΛՃͨ͠ϞσϧΛͬͯ TVCNJUʢϥΠϒςετʣ͢Δʹ࠷̎ϲ݄͔͔Δ • 1VCMJD-#ʢখنϥΠϒςετʣͰείΞ্͕͕ͬͯ QSJWBUF-#ʢશ৴ͷөʣʹϦιʔεͷ߹্ɼ ୯ҐͷظؒөͰ͖ͳ͍͜ͱଟ͍ • ͦͦ-#ʹڝ૪૬ख͍ͳ͍ • 1SJWBUFͷείΞʢऩӹʣ্͕͕Δͱͪΐͬͱڅྉ্͕͕Δ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. ここまでのまとめ
29 • ,BHHMFͰΘΕ͍ͯΔਫ਼վળख๏࣮ͷ$53༧ଌͰཱ͔ͭʁ • ਫ਼վળɾऩӹվળʹܨ͕Δ • ͨͩ͠ɼखܰʹΦϯϥΠϯਪ·Ͱ͍͚࣋ͬͯΔख๏গͳ͍ • ΦϯϥΠϯਪڥඋ͕ඇৗʹେม • ,BHHMFͰܭࢉ࣌ؒϝϞϦͷ੍ݶ͕؇͍͔Βͦ͜खܰʹ 1%$"ΛճͤΔ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. agenda
30 :+Ͱͷࠂ৴ͷʢಛʹ$53༧ଌʣ ࣅͨσʔλʹରͯ͠,BHHMFͰΑ͘ΘΕΔख๏ ,BHHMFͰͷख๏$53༧ଌͷ࣮Ͱ༗ޮ͔ ,BHHMFͰֶΜཱͩͬͨ͜ͱཱͨͳ͔ͬͨ͜ͱ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. Kaggleで学んで成果に繋がったことは︖
31 • ݱ࣌Ͱਖ਼ࢥ͍͔ͭͳ͍ ʢ˞ݱ৬ݱ෦ॺݱ࣌ͰͷݸਓతܦݧͰ͢ʣ • ΦϑϥΠϯධՁૉૣ͘ߦ͑ͯɼ ৴ʹ͍ͮΒ͘ऩӹվળʹ݁ͼ͍͍ͭͯͳ͍ • తͳՌʹܨ͕Βͳ͍͕ʹཱ͍ͬͯΔͷ 1BOEBT NBUQMPUMJCͳͲͷϥΠϒϥϦͷ͍ํ • ϥΠϒςετ݁Ռ୳ࡧతσʔλղੳʢ&%"ʣ͕ ૉૣ͘Ͱ͖ΔͷHPPE
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. Kaggleで学んで役に⽴ったことは︖
32 • ͦͷଞɼ,BHHMFͰֶΜͰۀͰʹཱͬͨ͜ͱͷ͋Δ͜ͱ • ,FSBTMJHIUHCNͰαΫοͱਫ਼ධՁ͕Ͱ͖Δ • GBTUUFYUXPSEWFDΛαΫοͱࢼͤΔ • εέʔϧ͕ؔ͢ΔϞσϧͷ߹ɼ4LFXͳͷಛྔʹMPHQΛ ద༻ͨ͠ํ͕ྑ͍͜ͱΛ͍ͬͯΔ • 1FSNVUBUJPOJNQPSUBODF OVMMJNQPSUBODFΛ͍ͬͯΔ • ಛྔؒͷ࢛ଇԋࢉΛͨ͠ಛྔͷՃͰUSFFͷਫ਼มΘΓ͏Δ͜ͱΛ ͍ͬͯΔ • %SPQPVUͷޙʹ#BUDI/PSNΛ͍͚ͯ͠ͳ͍͜ͱΛ͍ͬͯΔ
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. Kaggleでコーディングを学んだ悪影響
33 • มʹಛྔʹ߆ͬͨ݁Ռɼอकੑ͕͘ͳͬͯ ϦϑΝΫλϦϯά͢Δඞཁ͕ग़Δ • ઢܗϞσϧͷҙΛΕͯυπϘʹϋϚͬͨΓ͢Δ • (#%5Ͱϙϯʹ׳Εͨฐ • ΫιͰ͔OPUFCPPLʹ׳Ε͍͗ͯͯ͢ࣄͰՄಡੑͷͳ͍ίʔυΛ ੜΈग़ͯ͠͠·͏ • -#্Ͱͷڝ૪͕ͳ͘վળͷ1%$"͕͍.-Ϟσϧ࡞ʹָ͠ΈΛ ݟग़ͮ͠Β͍ ※ ࣗͷLBHHMFͷऔΓΈํͷ߹ͷͰ͢
Copyright (C) 2020 Yahoo Japan Corporation. All Rights Reserved. 雑感
34 • ੍ݶ͕͋Δ߹ͷख๏͋·Γ୳ࡧ͞Εͳ͍ͷ,BHHMFͷ೦ͳ ͱ͜ΖͰ͋Δ͕ɼ੍ݶΛແࢹͯ͠෯͍ख๏ΛࢼͤΔͷ ,BHHMFͷϝϦοτ • ,BHHMF͍ͬͯͯۀͰʹཱͬͨͷϥΠϒϥϦͷ͍ํʹ ׳Ε͍ͯΔ͜ͱ͕ओɽ • ಛఆͷίϯϖͰۚϝμϧऔΔͱ͜·ͰؤுΔΑΓ ৭ΜͳίϯϖͰιϩಔͱΔͱ͜Ζ·Ͱͬͨํ͕ ۀͷʹཱͪͦ͏ • ʢ˞ݱ৬ݱ෦ॺݱ࣌ͰͷݸਓతݟղͰ͢ʣ