Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Machine Learning を使ってみた
Search
Kenta Murata
April 21, 2015
Technology
17
5k
Amazon Machine Learning を使ってみた
画面を指さしながら説明するために作った背景画像の上に、簡単な説明テキストを追加したやつです。
Kenta Murata
April 21, 2015
Tweet
Share
More Decks by Kenta Murata
See All by Kenta Murata
waitany と waitall を作った話
mrkn
0
160
HolidayJp.jl を作りました
mrkn
0
170
Calling Julia functions from Streamlit applications
mrkn
1
390
Red Data Tools で切り開く Ruby の未来
mrkn
3
1.1k
Method-based JIT compilation by transpiling to Julia
mrkn
0
6.9k
Apache Arrow C++ Datasets
mrkn
4
1.5k
Reducing ActiveRecord memory consumption using Apache Arrow
mrkn
0
1.6k
RubyData and Rails
mrkn
0
3k
Tensor and Arrow
mrkn
0
910
Other Decks in Technology
See All in Technology
20241214_WACATE2024冬_テスト設計技法をチョット俯瞰してみよう
kzsuzuki
3
530
LINEスキマニにおけるフロントエンド開発
lycorptech_jp
PRO
0
330
権威ドキュメントで振り返る2024 #年忘れセキュリティ2024
hirotomotaguchi
2
750
1等無人航空機操縦士一発試験 合格までの道のり ドローンミートアップ@大阪 2024/12/18
excdinc
0
170
NilAway による静的解析で「10 億ドル」を節約する #kyotogo / Kyoto Go 56th
ytaka23
3
380
大幅アップデートされたRagas v0.2をキャッチアップ
os1ma
2
540
ガバメントクラウドのセキュリティ対策事例について
fujisawaryohei
0
560
祝!Iceberg祭開幕!re:Invent 2024データレイク関連アップデート10分総ざらい
kniino
3
310
10分で学ぶKubernetesコンテナセキュリティ/10min-k8s-container-sec
mochizuki875
3
350
組織に自動テストを書く文化を根付かせる戦略(2024冬版) / Building Automated Test Culture 2024 Winter Edition
twada
PRO
17
4.7k
普通のエンジニアがLaravelコアチームメンバーになるまで
avosalmon
0
110
podman_update_2024-12
orimanabu
1
280
Featured
See All Featured
Music & Morning Musume
bryan
46
6.2k
RailsConf 2023
tenderlove
29
940
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
Optimizing for Happiness
mojombo
376
70k
How to train your dragon (web standard)
notwaldorf
88
5.7k
The Invisible Side of Design
smashingmag
298
50k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
5
450
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
810
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Side Projects
sachag
452
42k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Transcript
Amazon ML Λ ͬͯΈͨ Kenta Murata 2015.04.21
ػցֶश
ػցֶशͰͰ͖Δ͜ͱ 1. ճؼ 2. ྨ 3. ΫϥελϦϯά
ػցֶशͰͰ͖Δ͜ͱ 1. ճؼ 2. ྨ 3. ΫϥελϦϯά → ࣮ͷ༧ଌ http://commons.wikimedia.org/wiki/File:Linear_regression.svg
http://commons.wikimedia.org/wiki/File:Polyreg_scheffe.svg
ػցֶशͰͰ͖Δ͜ͱ 1. ճؼ 2. ྨ 3. ΫϥελϦϯά → ࣮ͷ༧ଌ →
͔̋×͔Λ༧ଌ http://en.wikipedia.org/wiki/File:SVM_with_soft_margin.pdf
ػցֶशͰͰ͖Δ͜ͱ 1. ճؼ 2. ྨ 3. ΫϥελϦϯά → ࣮ͷ༧ଌ →
͔̋×͔Λ༧ଌ → ࣗಈάϧʔϓ͚ http://commons.wikimedia.org/wiki/File:KMeans-density-data.svg
Amazon Machine Learning
Amazon Machine Learning ͰͰ͖Δ͜ͱ 1. ճؼ 2. ೋྨ 3. ଟྨ
Amazon Machine Learning ͰͰ͖Δ͜ͱ 1. ճؼ 2. ೋྨ 3. ଟྨ
ͬͯΈͨ
Amazon Machine Learning Ͱ ଟྨثΛ࡞Δ
σʔλͷ४උ ↓ σʔλιʔε࡞ ↓ Ϟσϧ࡞ ↓ (σʔλιʔεͷࣗಈׂ) ↓ Ϟσϧͷֶश ↓
ϞσϧͷධՁ ଟྨثͷ࡞खॱ
σʔλͷ४උ
None
70,000ݸͷखॻ͖ࣈ http://myselph.de/neuralNet.html 28px 28px
60,000ݸ → ֶश༻ 10,000ݸ → ධՁ༻ ֶश༻ͱධՁ༻ʹ༧Ί͚ͯ͞Ε͍ͯΔ
όΠφϦσʔλͳͷͰ CSV ม͢Δ
28px 28px y, x1, x2,ɾɾɾ, x_k,ɾɾɾ, x784 8, 0, 0,ɾɾɾ,
221,ɾɾɾ, 0 256֊ௐάϨΠεέʔϧ ਖ਼ղϥϕϧ ϐΫηϧ
μϯϩʔυ͢Δ
https://rubygems.org/gems/mnist
$ gem install mnist $ mnist2csv train-images-idx3-ubyte.gz train-labels-idx1-ubyte.gz > mnist_train.csv
$ mnist2csv t10k-images-idx3-ubyte.gz t10k-labels-idx1-ubyte.gz > mnist_test.csv
CSV ϑΝΠϧΛ S3 ʹΞοϓϩʔυ͢Δ
σʔλιʔεΛ࡞Δ
None
Ξοϓϩʔυͨ͠ CSV ϑΝΠϧ
None
None
None
None
ྨରͷΧϥϜΛબͯ͠Ͷὑ
σʔλΛݟͯࣗಈఆ
༧ଌ݁Ռ͕σʔλιʔεͷͲͷߦʹରԠ͢Δ͔Λ ࣝผ͢ΔͨΊͷ ID ͕͋Εࢦఆ͢Δ ࠓճແ͍ͷͰࢦఆ͠ͳ͍
None
None
None
None
ϞσϧΛ࡞Δ
None
ೖྗσʔλΛબ
બͿ
None
None
σʔλΛ 7:3 ʹׂͯ͠ 7 ͷํΛ܇࿅ʹɺ3 ͷํ ΛϞσϧͷධՁʹ͏
͍Ζ͍ΖࣗͰࢦఆ͢Δ ࠓճͬͪ͜
None
σʔλͷલॲཧํ๏ͳͲ Λ JSON Ͱࢦఆ͢Δ ϑΟʔϧυɻ ࠓճ CSV ʹมͨ͠ ͚ͩͰલॲཧ͕ྃͯ͠ ΔͷͰσϑΥϧτͷ··
Ͱ͓̺
None
Regularization (ਖ਼ଇԽ) ɺϞσϧͷաֶश (܇࿅σʔ λʹద߹͗ͯ͢͠͠·͏ࣄ) Λ͙ͨΊʹߦ͏ɻ L1 (Lasso ճؼ) ɺෆཁͳύϥϝʔλΛͬͯϞσϧΛ
γϯϓϧʹ͍ͨ͠ͱ͖ʹ͏ɻ L2 (Ridge ճؼ) Β͔ͳϞσϧ͕ཉ͍͠ͱ͖ʹ͏ɻ (ײ: L1 ͱ L2 ΛࠞͥΒΕΕͬͱྑ͍ͷʹ)
None
Ϟσϧͷ࡞ޙʹࣗಈతʹධՁ࣮ࢪ͢Δ͔Ͳ͏͔ɻ ࠓճผʹධՁΛΔͷͰ No ΛબͿɻ
None
None
ϞσϧΛ࡞Δ
ֶशδϣϒࣗಈతʹ։࢝͢Δ
None
60,000 ڭࢣσʔλ → 20
ϞσϧΛධՁ͢Δ
None
None
None
None
None
None
None
10,000 ςετσʔλ → 1ʙ2
None
ҎԼͷࣜͰܭࢉ͞ΕΔϞσϧͷ༏ल͞ΛଌΔྔ 2 × ద߹ × ࠶ݱ ద߹ + ࠶ݱ
ਅͷྨ 1 ͦͷଞ ༧ ଌ ݁ Ռ 1 True Positive
False Positive ͦ ͷ ଞ False Negative True Negative ద߹ ʹ ࠶ݱ ʹ True Positive True Positive + False Positive True Positive True Positive + False Negative TP FP FN TN TP FP FN TN
None
1,000 ڭࢣσʔλͰ࡞ͬͨϞσϧͷ߹
None
ڭࢣσʔλ͕ଟ͍΄ͲϞσϧͷੑೳ͕ྑ͘ͳΔ
ϞσϧΛ͏
Ϟσϧͷ͍ํ 1. όον༧ଌ 2. ϦΞϧλΠϜ༧ଌ
Ϟσϧͷ͍ํ 1. όον༧ଌ 2. ϦΞϧλΠϜ༧ଌ → ·ͱ·ͬͨσʔλΛ·ͱΊͯ༧ଌ
Ϟσϧͷ͍ํ 1. όον༧ଌ 2. ϦΞϧλΠϜ༧ଌ → ·ͱ·ͬͨσʔλΛ·ͱΊͯ༧ଌ → API Λͬͯ1ͭͣͭ༧ଌ
Amazon Machine Learning ͷྉۚମܥ
Amazon Machine Learning ͷྉۚମܥ
1,000 σʔλͰϞσϧΛ࡞ͬͨͱ͖
70,000 σʔλͰϞσϧΛ࡞ͬͨͱ͖
S3 price
Amazon Machine Learning ΛͬͯΈͨײ 1. Α͘Ͱ͖ͯΔ 2. ͬ͘͞ͱϓϩτλΠϓ͍ͨ࣌͠ʹศརͦ͏ 3. ֶशࡁΈͷϞσϧΛΤΫεϙʔτͰ͖ͳ͍
Amazon Machine Learning ΛͬͯΈͨײ 1. Α͘Ͱ͖ͯΔ 2. ͬ͘͞ͱϓϩτλΠϓ͍ͨ࣌͠ʹศརͦ͏ → ΞϧΰϦζϜΛදʹग़ͣ͞ʹ্ख͘؆ུԽͯ͠Δ
3. ֶशࡁΈͷϞσϧΛΤΫεϙʔτͰ͖ͳ͍
Amazon Machine Learning ΛͬͯΈͨײ 1. Α͘Ͱ͖ͯΔ 2. ͬ͘͞ͱϓϩτλΠϓ͍ͨ࣌͠ʹศརͦ͏ → ΞϧΰϦζϜΛදʹग़ͣ͞ʹ্ख͘؆ུԽͯ͠Δ
→ ࣮ӡ༻લʹ༷ʑͳಛϕΫτϧΛ؆୯ʹࢼͤΔ 3. ֶशࡁΈͷϞσϧΛΤΫεϙʔτͰ͖ͳ͍
Amazon Machine Learning ΛͬͯΈͨײ 1. Α͘Ͱ͖ͯΔ 2. ͬ͘͞ͱϓϩτλΠϓ͍ͨ࣌͠ʹศརͦ͏ → ΞϧΰϦζϜΛදʹग़ͣ͞ʹ্ख͘؆ུԽͯ͠Δ
→ ࣮ӡ༻લʹ༷ʑͳಛϕΫτϧΛ؆୯ʹࢼͤΔ 3. ֶशࡁΈͷϞσϧΛΤΫεϙʔτͰ͖ͳ͍ → ࣮ӡ༻࣌ࣗͰ࣮ͨ͠ϞσϧΛ͏ ɹ ϓϩτλΠϓͰ্ख͘ߦ͖ͦ͏ͳ͜ͱ͕ ɹ ͔ͬͯΔͷͰ࣮ίετؾʹͳΒͳ͍!?