Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Machine Learning を使ってみた
Search
Kenta Murata
April 21, 2015
Technology
17
5.2k
Amazon Machine Learning を使ってみた
画面を指さしながら説明するために作った背景画像の上に、簡単な説明テキストを追加したやつです。
Kenta Murata
April 21, 2015
Tweet
Share
More Decks by Kenta Murata
See All by Kenta Murata
waitany と waitall を作った話
mrkn
0
260
HolidayJp.jl を作りました
mrkn
0
280
Calling Julia functions from Streamlit applications
mrkn
1
510
Red Data Tools で切り開く Ruby の未来
mrkn
3
1.2k
Method-based JIT compilation by transpiling to Julia
mrkn
0
7.8k
Apache Arrow C++ Datasets
mrkn
4
1.7k
Reducing ActiveRecord memory consumption using Apache Arrow
mrkn
0
1.7k
RubyData and Rails
mrkn
0
3.2k
Tensor and Arrow
mrkn
0
1k
Other Decks in Technology
See All in Technology
Android Audio: Beyond Winning On It
atsushieno
0
110
未経験者・初心者に贈る!40分でわかるAndroidアプリ開発の今と大事なポイント
operando
5
390
Practical Agentic AI in Software Engineering
uzyn
0
100
20250903_1つのAWSアカウントに複数システムがある環境におけるアクセス制御をABACで実現.pdf
yhana
3
550
Evolución del razonamiento matemático de GPT-4.1 a GPT-5 - Data Aventura Summit 2025 & VSCode DevDays
lauchacarro
0
170
Platform開発が先行する Platform Engineeringの違和感
kintotechdev
4
550
Webブラウザ向け動画配信プレイヤーの 大規模リプレイスから得た知見と学び
yud0uhu
0
230
会社紹介資料 / Sansan Company Profile
sansan33
PRO
6
380k
エラーとアクセシビリティ
schktjm
1
1.2k
Autonomous Database - Dedicated 技術詳細 / adb-d_technical_detail_jp
oracle4engineer
PRO
4
10k
企業の生成AIガバナンスにおけるエージェントとセキュリティ
lycorptech_jp
PRO
2
160
BPaaSにおける人と協働する前提のAIエージェント-AWS登壇資料
kentarofujii
0
130
Featured
See All Featured
Raft: Consensus for Rubyists
vanstee
140
7.1k
GitHub's CSS Performance
jonrohan
1032
460k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
Visualization
eitanlees
148
16k
Building Adaptive Systems
keathley
43
2.7k
RailsConf 2023
tenderlove
30
1.2k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
GraphQLとの向き合い方2022年版
quramy
49
14k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
Documentation Writing (for coders)
carmenintech
74
5k
The Invisible Side of Design
smashingmag
301
51k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Transcript
Amazon ML Λ ͬͯΈͨ Kenta Murata 2015.04.21
ػցֶश
ػցֶशͰͰ͖Δ͜ͱ 1. ճؼ 2. ྨ 3. ΫϥελϦϯά
ػցֶशͰͰ͖Δ͜ͱ 1. ճؼ 2. ྨ 3. ΫϥελϦϯά → ࣮ͷ༧ଌ http://commons.wikimedia.org/wiki/File:Linear_regression.svg
http://commons.wikimedia.org/wiki/File:Polyreg_scheffe.svg
ػցֶशͰͰ͖Δ͜ͱ 1. ճؼ 2. ྨ 3. ΫϥελϦϯά → ࣮ͷ༧ଌ →
͔̋×͔Λ༧ଌ http://en.wikipedia.org/wiki/File:SVM_with_soft_margin.pdf
ػցֶशͰͰ͖Δ͜ͱ 1. ճؼ 2. ྨ 3. ΫϥελϦϯά → ࣮ͷ༧ଌ →
͔̋×͔Λ༧ଌ → ࣗಈάϧʔϓ͚ http://commons.wikimedia.org/wiki/File:KMeans-density-data.svg
Amazon Machine Learning
Amazon Machine Learning ͰͰ͖Δ͜ͱ 1. ճؼ 2. ೋྨ 3. ଟྨ
Amazon Machine Learning ͰͰ͖Δ͜ͱ 1. ճؼ 2. ೋྨ 3. ଟྨ
ͬͯΈͨ
Amazon Machine Learning Ͱ ଟྨثΛ࡞Δ
σʔλͷ४උ ↓ σʔλιʔε࡞ ↓ Ϟσϧ࡞ ↓ (σʔλιʔεͷࣗಈׂ) ↓ Ϟσϧͷֶश ↓
ϞσϧͷධՁ ଟྨثͷ࡞खॱ
σʔλͷ४උ
None
70,000ݸͷखॻ͖ࣈ http://myselph.de/neuralNet.html 28px 28px
60,000ݸ → ֶश༻ 10,000ݸ → ධՁ༻ ֶश༻ͱධՁ༻ʹ༧Ί͚ͯ͞Ε͍ͯΔ
όΠφϦσʔλͳͷͰ CSV ม͢Δ
28px 28px y, x1, x2,ɾɾɾ, x_k,ɾɾɾ, x784 8, 0, 0,ɾɾɾ,
221,ɾɾɾ, 0 256֊ௐάϨΠεέʔϧ ਖ਼ղϥϕϧ ϐΫηϧ
μϯϩʔυ͢Δ
https://rubygems.org/gems/mnist
$ gem install mnist $ mnist2csv train-images-idx3-ubyte.gz train-labels-idx1-ubyte.gz > mnist_train.csv
$ mnist2csv t10k-images-idx3-ubyte.gz t10k-labels-idx1-ubyte.gz > mnist_test.csv
CSV ϑΝΠϧΛ S3 ʹΞοϓϩʔυ͢Δ
σʔλιʔεΛ࡞Δ
None
Ξοϓϩʔυͨ͠ CSV ϑΝΠϧ
None
None
None
None
ྨରͷΧϥϜΛબͯ͠Ͷὑ
σʔλΛݟͯࣗಈఆ
༧ଌ݁Ռ͕σʔλιʔεͷͲͷߦʹରԠ͢Δ͔Λ ࣝผ͢ΔͨΊͷ ID ͕͋Εࢦఆ͢Δ ࠓճແ͍ͷͰࢦఆ͠ͳ͍
None
None
None
None
ϞσϧΛ࡞Δ
None
ೖྗσʔλΛબ
બͿ
None
None
σʔλΛ 7:3 ʹׂͯ͠ 7 ͷํΛ܇࿅ʹɺ3 ͷํ ΛϞσϧͷධՁʹ͏
͍Ζ͍ΖࣗͰࢦఆ͢Δ ࠓճͬͪ͜
None
σʔλͷલॲཧํ๏ͳͲ Λ JSON Ͱࢦఆ͢Δ ϑΟʔϧυɻ ࠓճ CSV ʹมͨ͠ ͚ͩͰલॲཧ͕ྃͯ͠ ΔͷͰσϑΥϧτͷ··
Ͱ͓̺
None
Regularization (ਖ਼ଇԽ) ɺϞσϧͷաֶश (܇࿅σʔ λʹద߹͗ͯ͢͠͠·͏ࣄ) Λ͙ͨΊʹߦ͏ɻ L1 (Lasso ճؼ) ɺෆཁͳύϥϝʔλΛͬͯϞσϧΛ
γϯϓϧʹ͍ͨ͠ͱ͖ʹ͏ɻ L2 (Ridge ճؼ) Β͔ͳϞσϧ͕ཉ͍͠ͱ͖ʹ͏ɻ (ײ: L1 ͱ L2 ΛࠞͥΒΕΕͬͱྑ͍ͷʹ)
None
Ϟσϧͷ࡞ޙʹࣗಈతʹධՁ࣮ࢪ͢Δ͔Ͳ͏͔ɻ ࠓճผʹධՁΛΔͷͰ No ΛબͿɻ
None
None
ϞσϧΛ࡞Δ
ֶशδϣϒࣗಈతʹ։࢝͢Δ
None
60,000 ڭࢣσʔλ → 20
ϞσϧΛධՁ͢Δ
None
None
None
None
None
None
None
10,000 ςετσʔλ → 1ʙ2
None
ҎԼͷࣜͰܭࢉ͞ΕΔϞσϧͷ༏ल͞ΛଌΔྔ 2 × ద߹ × ࠶ݱ ద߹ + ࠶ݱ
ਅͷྨ 1 ͦͷଞ ༧ ଌ ݁ Ռ 1 True Positive
False Positive ͦ ͷ ଞ False Negative True Negative ద߹ ʹ ࠶ݱ ʹ True Positive True Positive + False Positive True Positive True Positive + False Negative TP FP FN TN TP FP FN TN
None
1,000 ڭࢣσʔλͰ࡞ͬͨϞσϧͷ߹
None
ڭࢣσʔλ͕ଟ͍΄ͲϞσϧͷੑೳ͕ྑ͘ͳΔ
ϞσϧΛ͏
Ϟσϧͷ͍ํ 1. όον༧ଌ 2. ϦΞϧλΠϜ༧ଌ
Ϟσϧͷ͍ํ 1. όον༧ଌ 2. ϦΞϧλΠϜ༧ଌ → ·ͱ·ͬͨσʔλΛ·ͱΊͯ༧ଌ
Ϟσϧͷ͍ํ 1. όον༧ଌ 2. ϦΞϧλΠϜ༧ଌ → ·ͱ·ͬͨσʔλΛ·ͱΊͯ༧ଌ → API Λͬͯ1ͭͣͭ༧ଌ
Amazon Machine Learning ͷྉۚମܥ
Amazon Machine Learning ͷྉۚମܥ
1,000 σʔλͰϞσϧΛ࡞ͬͨͱ͖
70,000 σʔλͰϞσϧΛ࡞ͬͨͱ͖
S3 price
Amazon Machine Learning ΛͬͯΈͨײ 1. Α͘Ͱ͖ͯΔ 2. ͬ͘͞ͱϓϩτλΠϓ͍ͨ࣌͠ʹศརͦ͏ 3. ֶशࡁΈͷϞσϧΛΤΫεϙʔτͰ͖ͳ͍
Amazon Machine Learning ΛͬͯΈͨײ 1. Α͘Ͱ͖ͯΔ 2. ͬ͘͞ͱϓϩτλΠϓ͍ͨ࣌͠ʹศརͦ͏ → ΞϧΰϦζϜΛදʹग़ͣ͞ʹ্ख͘؆ུԽͯ͠Δ
3. ֶशࡁΈͷϞσϧΛΤΫεϙʔτͰ͖ͳ͍
Amazon Machine Learning ΛͬͯΈͨײ 1. Α͘Ͱ͖ͯΔ 2. ͬ͘͞ͱϓϩτλΠϓ͍ͨ࣌͠ʹศརͦ͏ → ΞϧΰϦζϜΛදʹग़ͣ͞ʹ্ख͘؆ུԽͯ͠Δ
→ ࣮ӡ༻લʹ༷ʑͳಛϕΫτϧΛ؆୯ʹࢼͤΔ 3. ֶशࡁΈͷϞσϧΛΤΫεϙʔτͰ͖ͳ͍
Amazon Machine Learning ΛͬͯΈͨײ 1. Α͘Ͱ͖ͯΔ 2. ͬ͘͞ͱϓϩτλΠϓ͍ͨ࣌͠ʹศརͦ͏ → ΞϧΰϦζϜΛදʹग़ͣ͞ʹ্ख͘؆ུԽͯ͠Δ
→ ࣮ӡ༻લʹ༷ʑͳಛϕΫτϧΛ؆୯ʹࢼͤΔ 3. ֶशࡁΈͷϞσϧΛΤΫεϙʔτͰ͖ͳ͍ → ࣮ӡ༻࣌ࣗͰ࣮ͨ͠ϞσϧΛ͏ ɹ ϓϩτλΠϓͰ্ख͘ߦ͖ͦ͏ͳ͜ͱ͕ ɹ ͔ͬͯΔͷͰ࣮ίετؾʹͳΒͳ͍!?