Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
adk-samples に学ぶデータ分析 LLM エージェント開発
Search
na0
November 23, 2025
Technology
3
1.4k
adk-samples に学ぶデータ分析 LLM エージェント開発
DevFest Tokyo 2025
https://gdg-tokyo.connpass.com/event/369416/
na0
November 23, 2025
Tweet
Share
More Decks by na0
See All by na0
データ活用 3.0 with Socrates
na0
2
1.2k
AI 時代のデータ戦略
na0
8
4.6k
BigQuery でできること、人間がやるべきこと
na0
0
1.1k
データ分析エージェント Socrates の育て方
na0
10
6k
AI エージェントと考え直すデータ基盤
na0
26
12k
メルカリにおけるデータアナリティクス AI エージェント「Socrates」と ADK 活用事例
na0
28
31k
BigQuery リリースノート - 2023年上半期 #bq_sushi
na0
3
480
2023 年の BigQuery 権限管理
na0
5
3.3k
Dataformとdbtで楽するデータモデリング
na0
1
3.3k
Other Decks in Technology
See All in Technology
ハッカソンから社内プロダクトへ AIエージェント「ko☆shi」開発で学んだ4つの重要要素
sonoda_mj
6
1.1k
SQLだけでマイグレーションしたい!
makki_d
0
1.1k
障害対応訓練、その前に
coconala_engineer
0
140
ペアーズにおけるAIエージェント 基盤とText to SQLツールの紹介
hisamouna
2
1.1k
ウェルネス SaaS × AI、1,000万ユーザーを支える 業界特化 AI プロダクト開発への道のり
hacomono
PRO
0
310
MariaDB Connector/C のcaching_sha2_passwordプラグインの仕様について
boro1234
0
980
mairuでつくるクレデンシャルレス開発環境 / Credential-less development environment using Mailru
mirakui
5
570
re:Invent 2025 ~何をする者であり、どこへいくのか~
tetutetu214
0
240
AIの長期記憶と短期記憶の違いについてAgentCoreを例に深掘ってみた
yakumo
4
470
M&Aで拡大し続けるGENDAのデータ活用を促すためのDatabricks権限管理 / AEON TECH HUB #22
genda
0
140
Snowflake導入から1年、LayerXのデータ活用の現在 / One Year into Snowflake: How LayerX Uses Data Today
civitaspo
0
610
ExpoのインダストリーブースでみたAWSが見せる製造業の未来
hamadakoji
0
180
Featured
See All Featured
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
29
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
62
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Building the Perfect Custom Keyboard
takai
1
660
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
180
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
77
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
67
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1k
Skip the Path - Find Your Career Trail
mkilby
0
23
Transcript
Editable Location Naofumi Yamada @na0fu3y Analytics Engineer, Mercari, Inc. adk-samples
に学ぶ データ分析 LLM Agent 開発
na0 メルカリでデータ分析 LLM Agent をつくっている人。 Google Developer Expert - Cloud。
LLM Agent 開発の課題意識 • PoC したいけど最小構成って? • どう育てればよい?
今日のゴール • adk-samples を開発の羅針盤だと理解する • データ分析を例として育て方を理解する • 「使える」データ分析エージェントを持ち帰る
github.com/google/ adk-samples
30+ のサンプルエージェント • 双方向対話 bidi-demo • データ分析 data-science • 調査
deep-search • などなど...!
bidi-demo Google 検索できる 音声応答 Agent
from google.adk.agents import Agent from google.adk.tools import google_search agent =
Agent( name="google_search_agent", model="gemini-live-2.5-flash-preview-native-audio-09-2025", tools=[google_search], instruction="You are a helpful assistant." ) adk-samples/python/agents/bidi-demo/
data-science BigQuery と Python を扱うデータ分析 Agent
data-science のツール • BigQuery クエリ実行 • AlloyDB クエリ実行 • BigQuery
ML に関する知識検索 • 自然言語 to SQL • Python 実行
私たちに必須なツールは ...? • BigQuery クエリ実行 • AlloyDB クエリ実行 • BigQuery
ML に関する知識検索 • 自然言語 to SQL • Python 実行
私たちの Agent v1 from google.adk.agents import Agent from google.adk.tools.bigquery import
BigQueryToolset bigquery_toolset = BigQueryToolset(tool_filter=["execute_sql"]) root_agent = Agent( model="gemini-3-pro-preview", name="sample", instruction="You are a data science agent", tools=[bigquery_toolset], )
私たちの Agent v1 BigQuery にクエリを 実行できる
次の私たちに必要なツールは ...? • BigQuery クエリ実行 • BigQuery のテーブルの詳細を確認する • BigQuery
のテーブルを一覧する
私たちの Agent v2 bigquery_toolset = BigQueryToolset( tool_filter=[ "get_table_info", "list_table_ids", "execute_sql",
] )
私たちの Agent v2 データを教えると勝 手に調べて分析して くれる
私たちが他に必要なツールは ...? • BigQuery クエリ実行 • BigQuery のテーブルの詳細を確認する • BigQuery
のテーブルを検索する 一覧する
私たちの Agent v3 def rag_response(query: str) -> str: response =
rag.retrieval_query( rag_resources=[rag.RagResource(rag_corpus=OUR_CORPUS)], text=query, ) return str(response) root_agent = Agent( tools=[bigquery_toolset, rag_response], // 変更のない引数略 )
私たちの Agent v3 データを教えなくても 勝手に調べて分析し てくれる
そろそろガードレールも? • 利用者権限の認可下で動かす ◦ BigQuery クエリ実行 ◦ BigQuery のテーブルの詳細を確認する •
BigQuery のテーブルを検索する
私たちの Agent v4 credentials_config = BigQueryCredentialsConfig( client_id=os.getenv("OAUTH_CLIENT_ID"), client_secret=os.getenv("OAUTH_CLIENT_SECRET"), ) bigquery_toolset
= BigQueryToolset( tool_filter=["get_table_info", "execute_sql"], credentials_config=credentials_config )
私たちがやるべきこと • 欲望を言語化する ◦ 利用者目線の欲望レベルを上げていく ◦ 管理者目線のガードレールも忘れずに • つくる •
くりかえす
欲望が見つからない時は? • Gemini や同僚と話す • adk-samples を眺める • (na0 と話す)
私たちがやるべきこと(再) • LLM と協力して、欲望を言語化する • LLM と協力して、つくる • くりかえす
deep-search Deep Research の 実装例
ん? • Google 検索ツールを BigQuery やドキュメントを 参照するツールに置き換えたら...?
私たちがやるべきこと(再々) • LLM と協力して、欲望を言語化する • LLM と協力して、つくる • くりかえす