Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2022-01-29 KServe概要@機械学習の社会実装勉強会
Search
Naka Masato
January 29, 2022
Technology
0
920
2022-01-29 KServe概要@機械学習の社会実装勉強会
1. KServe概要
2. KServeのコンポーネント
3. KServeのアーキテクチャ
4. QuickStartの紹介
5. SklearnServerの仕組み紹介
Naka Masato
January 29, 2022
Tweet
Share
More Decks by Naka Masato
See All by Naka Masato
Dev Containerで安全に Claude Codeを使う
nakamasato
0
64
2025-01-26 Platform EngineeringがあればSREはいらない!? 新時代のSREに求められる役割とは@SREKaigi 2025
nakamasato
0
49
2025-01-25 Devin.aiを使ってみた使用感@機械学習社会実装勉強会第43回
nakamasato
0
480
2024-07-11 Mercari Hallo 立ち上げ時のSRE
nakamasato
2
590
2024-07-03 Eliminating toil with LLM
nakamasato
1
240
2024-05-25LangChain Agentの仕組み@機械学習社会実装勉強会第35回
nakamasato
0
330
2022-06-18 Ray Trainの紹介@機械学習の社会実装勉強会第12回
nakamasato
0
230
Ray Serve@機械学習の社会実装勉強会第11回
nakamasato
0
650
2022-04-29 Ray紹介@機械学習の社会実装勉強会
nakamasato
0
280
Other Decks in Technology
See All in Technology
開発と脆弱性と脆弱性診断についての話
su3158
1
1.2k
JOAI発表資料 @ 関東kaggler会
joai_committee
1
440
新規案件の立ち上げ専門チームから見たAI駆動開発の始め方
shuyakinjo
0
420
Devinを使ったモバイルアプリ開発 / Mobile app development with Devin
yanzm
0
210
[CV勉強会@関東 CVPR2025 読み会] MegaSaM: Accurate, Fast, and Robust Structure and Motion from Casual Dynamic Videos (Li+, CVPR2025)
abemii
0
200
帳票Vibe Coding
terurou
0
150
我々は雰囲気で仕事をしている / How can we do vibe coding as well
naospon
2
230
第4回 関東Kaggler会 [Training LLMs with Limited VRAM]
tascj
12
1.9k
microCMS 最新リリース情報(microCMS Meetup 2025)
microcms
0
220
絶対に失敗できないキャンペーンページの高速かつ安全な開発、WINTICKET × microCMS の開発事例
microcms
0
190
モダンフロントエンド 開発研修
recruitengineers
PRO
6
2.8k
制約理論(ToC)入門
recruitengineers
PRO
7
2.9k
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
The Cult of Friendly URLs
andyhume
79
6.6k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Unsuck your backbone
ammeep
671
58k
Faster Mobile Websites
deanohume
309
31k
Automating Front-end Workflow
addyosmani
1370
200k
How STYLIGHT went responsive
nonsquared
100
5.7k
The Invisible Side of Design
smashingmag
301
51k
Designing for Performance
lara
610
69k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Transcript
KServe概要 2022/01/29 Naka Masato
自己紹介 名前 那珂将人 経歴 • アルゴリズムエンジニアとしてレコメンドエンジン開発 • インフラ基盤整備 GitHub: https://github.com/nakamasato
Twitter: https://twitter.com/gymnstcs
コンテンツ • KServe 概要 • KServe アーキテクチャ • QuickStart •
SKlearnServer の仕組みの紹介
KServeとは ML model を本番環境へのデプロイと監視に関するチャレンジを解消するために作られ たモデル推論プラットフォーム Highly scalable and standards based
Model Inference Platform on Kubernetes for Trusted API.
KServeの特徴 1. Kubernetes の CustomResourceDefinition を 使ってモデルのサービングを管理 2. Kubernetes の機能を駆使して
ML モデルデ プロイ・管理の問題を解決 a. デプロイ b. モニタリング c. スケール 3. さまざまな ML ライブラリのモデルをサポート 🔺複雑に見えて、初心者にはとっつきにくい ! https://kserve.github.io/website/master/
1. KServe: CRD によってサービングしたいモデルを記述して作成する 2. Knative: オートスケーリング、バージョン管理、 Routing など全部やってくれるパック 3.
Istio: Microservices の可観測性、トラッフィク管理、セキュリティをコード変更なしで実 現 4. Cert Manager: TLS の certificate を管理 KServeで使われているコンポーネント KServce Knative Istio Cert Manager Serving するもの を定義 残りは、いろんなコンポーネントがうまく Deploy 管理、トラフィック管理、スケー リング、モニタリング、セキュリティなどをやってくれる Pod gateway
Control Planeのアーキテクチャ https://kserve.github.io/website/master/modelserving/control_plane/ 超複雑!
Control Planeのアーキテクチャ https://kserve.github.io/website/master/modelserving/control_plane/ 2. KServing の Controller が Knative を
通じて Deployment を作成 3. Pod が Deployment によって作成さ れます 4. AI app からのトラフィックは Transformer → Predictor 1. CustomResource の InferenceService を作成
QuickStart Prerequisite 1. Kubernetes Cluster Install Create InferenceService Check curl
-s "https://raw.githubusercontent.com/kserve/kserve/release-0.7/hack/quick_install.sh" | bash kubectl create ns kserve-test kubectl apply -f sklearn-inference-service.yaml -n kserve-test https://kserve.github.io/website/master/get_started/ curl -H "Host: ${SERVICE_HOSTNAME}" http://$INGRESS_HOST:$INGRESS_PORT/v1/models/sklearn-iris:predict -d @./data/iris-input.json
SKLearn Serverについて scikit-learn server は、 serving Scikit-learn models の実装になります https://github.com/kserve/kserve/tree/master/python/sklearnserver
sklearnserver というのが実装してあり、ローカルや s3 にある sklearn model を指定してサー ビング https://github.com/kserve/kserve/blob/master/python/sklearnserver/sklearnserver/__main__.py
SKLearn Serverについて SKLearnModel には 以下のメソッドが実装されている 1. load 2. predict
SKLearn Serverについて KServe で動かした QuickStart は、こちらがコンテナで動いていた ローカルで動かす場合は、以下のようにできる 1. モデルのファイルを準備 2.
sklearnserver を起動 3. client からアクセス python -m sklearnserver --model_dir ./ --model_name svm
まとめ 1. KServe を紹介 2. KServe の各コンポーネントの大まかな役割を紹介 3. KServe の
QuickStart を紹介 4. KServe の SKlearn Server がどのように作られているかを紹介