Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DBのindex(B-tree周り) に触れてみよう
Search
NearMeの技術発表資料です
PRO
May 21, 2024
Programming
0
81
DBのindex(B-tree周り) に触れてみよう
indexに関するイントロダクションです。今回は詳細については触れていませんが、B-treeを例に、indexとはどのようなものかについて触れています。
NearMeの技術発表資料です
PRO
May 21, 2024
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
ESLintをもっと有効活用しよう
nearme_tech
PRO
0
9
リファクタリングのための第一歩
nearme_tech
PRO
0
31
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
85
確率的プログラミング入門
nearme_tech
PRO
2
83
Observability and OpenTelemetry
nearme_tech
PRO
2
37
観察研究における因果推論
nearme_tech
PRO
1
110
React
nearme_tech
PRO
2
44
Architecture Decision Record (ADR)
nearme_tech
PRO
1
870
遺伝的アルゴリズムを実装する
nearme_tech
PRO
1
72
Other Decks in Programming
See All in Programming
ChatGPT とつくる PHP で OS 実装
memory1994
PRO
3
160
Cloudflare MCP ServerでClaude Desktop からWeb APIを構築
kutakutat
1
630
各クラウドサービスにおける.NETの対応と見解
ymd65536
0
230
サーバーゆる勉強会 DBMS の仕組み編
kj455
1
200
create_tableをしただけなのに〜囚われのuuid編〜
daisukeshinoku
0
330
歴史と現在から考えるスケーラブルなソフトウェア開発のプラクティス
i10416
0
260
return文におけるstd::moveについて
onihusube
1
1.4k
KubeCon + CloudNativeCon NA 2024 Overviewat Kubernetes Meetup Tokyo #68 / amsy810_k8sjp68
masayaaoyama
0
290
DevFest - Serverless 101 with Google Cloud Functions
tunmise
0
130
103 Early Hints
sugi_0000
1
330
非ブラウザランタイムとWeb標準 / Non-Browser Runtimes and Web Standards
petamoriken
0
410
「とりあえず動く」コードはよい、「読みやすい」コードはもっとよい / Code that 'just works' is good, but code that is 'readable' is even better.
mkmk884
6
1.3k
Featured
See All Featured
Optimising Largest Contentful Paint
csswizardry
33
3k
How GitHub (no longer) Works
holman
312
140k
Measuring & Analyzing Core Web Vitals
bluesmoon
5
190
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Why Our Code Smells
bkeepers
PRO
335
57k
The Cost Of JavaScript in 2023
addyosmani
46
7.2k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
97
17k
We Have a Design System, Now What?
morganepeng
51
7.3k
Testing 201, or: Great Expectations
jmmastey
41
7.2k
Making Projects Easy
brettharned
116
6k
How to Ace a Technical Interview
jacobian
276
23k
Transcript
0 DBのindex(B-tree周り) に触れてみよう 2024-05-17 第90回NearMe技術勉強会 Kaito Asahi
1 indexに関して • indexの役割について ◦ クエリの高速化 ◦ 検索の最適化 ◦ ソートの高速化
◦ ユニーク性の保証 …
2 indexに関して • indexの役割について ◦ クエリの高速化 ◦ 検索の最適化 ◦ ソートの高速化
◦ ユニーク性の保証 … どういう仕組みなんだ...?
3 ☕少し脱線 〜SQLは⾮⼿続き型の⾔語〜 • SQLの命令の例 SELECT name, age FROM users
WHERE age >= 20; → 何が欲しいのかを命令するSQL文 → どのようにとってきて欲しいのかは命令していない!!(非手続き型) ∴ 効率の良い DB設計が求められる 💨👍 • どこにどのような 情報があるのか?(インデックス ) • どのように データを取ることが最適か?(統計情報)
4 indexの種類について(MySQL) • B-tree ◦ 最も一般的 なインデックスタイプ ◦ 等価検索および範囲検索に有効 •
HASH ◦ メモリーベースのストレージエンジン で使用される ◦ 等価検索に有効 • FULLTEXT ◦ テキスト検索用 に最適化されている • SPATIAL ◦ 地理データなどの空間的なデータ に最適化されている
5 indexの種類について(MySQL) • B-tree(今日はこれを中心) ◦ 最も一般的 なインデックスタイプ ◦ 等価検索および範囲検索に有効 •
HASH ◦ メモリーベースのストレージエンジン で使用される ◦ 等価検索に有効 • FULLTEXT ◦ テキスト検索用 に最適化されている • SPATIAL ◦ 地理データなどの空間的なデータ に最適化されている
6 ハンズオン(まずは触れてみる) • B-tree 1. MySQLのDocker imageをpullする $ docker pull
mysql 2. コンテナを起動する(rootアカウントのパスワード:root) $ docker run --name test-mysql -e MYSQL_ROOT_PASSWORD=root -d mysql:latest
7 ハンズオン(まずは触れてみる) • B-tree 3. スライド33枚目にあるPythonファイルで、sqlファイルを取得し、これをローカルからコンテナ 内に入 れる $ docker
cp employees_data.sql test-mysql:/ 4. コンテナに入る $ docker exec -it test-mysql sh
8 ハンズオン(まずは触れてみる) • B-tree 5. mysqlにログインする(パスワード:root) sh-5.1# mysql -u root
-p 6. DBを作成する(ここでは、test_db) mysql> CREATE DATABASE test_db; mysql> USE test_db; 7. employeesテーブルを作成する mysql> CREATE TABLE employees ( id INT AUTO_INCREMENT PRIMARY KEY, name VARCHAR(50), department VARCHAR(50), salary INT );
9 ハンズオン(まずは触れてみる) • B-tree 8. 一旦ログアウト(exit)し、10万レコードのデータを挿入する sh-5.1# mysql -u root
-p test_db < employees_data.sql 9. もう一度ログインし、id <= 100の範囲でデータをとってみる mysql> USE test_db; mysql> SELECT * FROM employees WHERE id <= 100 ORDER BY id;
10 ハンズオン(まずは触れてみる) • B-tree(コスト⽐較する) A. インデックスを適⽤していないとき mysql> EXPLAIN SELECT *
FROM employees WHERE department = 'Engineering'; +----+-------------+-----------+------------+------+---------------+------+---------+------+-------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+------+---------------+------+---------+------+-------+----------+-------------+ | 1 | SIMPLE | employees | NULL | ALL | NULL | NULL | NULL | NULL | 99904 | 10.00 | Using where | +----+-------------+-----------+------------+------+---------------+------+---------+------+-------+----------+-------------+ 1 row in set, 1 warning (0.00 sec)
11 ハンズオン(まずは触れてみる) • B-tree(コスト⽐較する) B. インデックスを適⽤するとき mysql> CREATE INDEX idx_department
ON employees(department); +----+-------------+-----------+------------+------+----------------+----------------+---------+-------+-------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+------+----------------+----------------+---------+-------+-------+----------+-------+ | 1 | SIMPLE | employees | NULL | ref | idx_department | idx_department | 203 | const | 40024 | 100.00 | NULL | +----+-------------+-----------+------------+------+----------------+----------------+---------+-------+-------+----------+-------+ 1 row in set, 1 warning (0.01 sec) mysql> EXPLAIN SELECT * FROM employees WHERE department = 'Engineering';
12 ハンズオン(まずは触れてみる) • B-tree(コスト⽐較する) ⾒⽐べると... +----+-------------+-----------+------------+------+----------------+----------------+---------+-------+-------+----------+-------+ | id | select_type
| table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+------+----------------+----------------+---------+-------+-------+----------+-------+ | 1 | SIMPLE | employees | NULL | ref | idx_department | idx_department | 203 | const | 40024 | 100.00 | NULL | +----+-------------+-----------+------------+------+----------------+----------------+---------+-------+-------+----------+-------+ 1 row in set, 1 warning (0.01 sec) +----+-------------+-----------+------------+------+---------------+------+---------+------+-------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+------+---------------+------+---------+------+-------+----------+-------------+ | 1 | SIMPLE | employees | NULL | ALL | NULL | NULL | NULL | NULL | 99904 | 10.00 | Using where | +----+-------------+-----------+------------+------+---------------+------+---------+------+-------+----------+-------------+ 1 row in set, 1 warning (0.00 sec) 処理する行数の推定値は 半減以下 インデックスが適用 されている
13
14 B-treeインデックスの仕組み • B-tree ◦ ノードの高さが同じになるような木構造をもつ → 平衡木
◦ 検索、挿入、更新、削除には O(logn) の計算量 ◦ index対象の列はソートされた状態 9 15 4 12 19 2 3 6 8 15 19 ルートノード 中間ノード 葉ノード
15 B-treeインデックスの仕組み • B-tree ◦ ノードの高さが同じになるような木構造をもつ → 平衡木
◦ 検索、挿入、更新、削除には O(logn) の計算量 ◦ index対象の列はソートされた状態 ◦ 等価検索に有効 Ex) 6を検索:9 → 12 → 6を辿れば良い 9 15 4 12 19 2 3 6 8 15 19 ルートノード 中間ノード 葉ノード
16 B-treeインデックスの仕組み • B-tree ◦ ノードの高さが同じになるような木構造をもつ → 平衡木
◦ 検索、挿入、更新、削除には O(logn) の計算量 ◦ index対象の列はソートされた状態 ◦ 等価検索に有効 Ex) 6を検索:9 → 12 → 6を辿れば良い 9 15 4 12 19 2 3 6 8 15 19 ルートノード 中間ノード 葉ノード 各ノードで t 個に分岐されるのであれば、探索範囲は 1/t となるので
17 B-treeインデックスの仕組み • B-tree ◦ ノードの高さが同じになるような木構造をもつ → 平衡木
◦ 検索、挿入、更新、削除には O(logn) の計算量 ◦ index対象の列はソートされた状態 ◦ 等価検索に有効 ◦ 範囲検索に有効 Ex) 6以下の値の検索:9 → 12 → 6より左の値 9 15 4 12 19 2 3 6 8 15 19 ルートノード 中間ノード 葉ノード ソートのおかげ
18 B-treeインデックスの仕組み • B-tree ◦ ノードの高さが同じになるような木構造をもつ → 平衡木
◦ 検索、挿入、更新、削除には O(logn) の計算量 ◦ index対象の列はソートされた状態 ◦ 等価検索に有効 ◦ 範囲検索に有効 ▪ “!=”(否定)には効果を持たない → 左と右どちらに値があるのか不明... 9 15 4 12 19 2 3 6 8 15 19 ルートノード 中間ノード 葉ノード
19 indexは張れば張るほど良いのでは!!!
20 indexは張れば張るほど良いのでは!!!
21 B-treeインデックスを有効にするために • カーディナリティの高い ものに ◦ なるべく値の重複の少ない列に • 大きなテーブル に対して利用
• WHERE句などの選択条件 に使用されている列に
22 B-treeインデックスを有効にするために • カーディナリティの高い ものに ◦ なるべく値の重複の少ない列 に(バリエーションがより豊富な列) 1. カーディナリティが高いもの
a. ユーザーID b. メールアドレス c. シリアルナンバー 2. カーディナリティが低いもの a. 性別 b. 婚姻状況 c. 部署名
23 B-treeインデックスを有効にするために • 大きなテーブル に対して利用 データが n 個の場合... 1. 全検索には
O(n) だけ時間がかかる 2. B-treeインデックスでは、O(logn) だけ時間がかかる → 小さい n では、nとlognにあまり差はない → より大きい n に対しては、 B-treeインデックスはとても有効!!
24 B-treeインデックスを有効にするために • WHERE句などの選択条件 に使用されている列に → ソートされた id での条件(id <
100)→ 主キーであれば、基本的にB-treeが適用される ※ 比較が曖昧なものにはインデックスが有効にならない 1. 否定(<>, !=) 2. OR 3. IS NULL 4. 値に演算を行なっている(id * 3 < 100, SUBSTR(id, 1, 1) = …など)
25 indexに最適なカラムとはどのようなものか? ~IDについて~ • データの挿入 1. 連番やソート可能なindexをもつ場合 1,2,3,...,100 1,2,3,...,40 41,42,43,...80
81,82,83,...,100 1,...10 91,...100 ・・・ 新しい
26 indexに最適なカラムとはどのようなものか? ~IDについて~ • データの挿入 1. 連番やソート可能なindexをもつ場合 1,2,3,...,100 1,2,3,...,40 41,42,43,...80
81,82,83,...,100 1,...10 91,...100 ・・・ 新しい 新しいデータをどの葉ノードに入れるかの チェックは右端だけで済む
27 indexに最適なカラムとはどのようなものか? ~IDについて~ • データの挿入 1. 連番やソート可能なindexをもつ場合 1,2,3,...,100 1,2,3,...,40 41,42,43,...80
81,82,83,...,100 1,...10 91,...100 ・・・ 新しい 新しいデータをどの葉ノードに入れるかの チェックは右端だけで済む しかもキャッシュが あればもっと速い!! 最新のデータをバッファプールに おけばキャッシュヒット率は高くなる
28 indexに最適なカラムとはどのようなものか? ~IDについて~ • データの挿入 2. UUIDなどのランダムな場合 ・・・ 新しい
29 indexに最適なカラムとはどのようなものか? ~IDについて~ • データの挿入 2. UUIDなどのランダムな場合 ・・・ 新しい どこに入れるべきか不明なので、
入れる場所の探索にコストがかかる
30 indexに最適なカラムとはどのようなものか? ~IDについて~ • データの挿入 2. UUIDなどのランダムな場合 ・・・ 新しい どこに入れるべきか不明なので、
入れる場所の探索にコストがかかる キャッシュを利用 できる保証がない ... キャッシュにヒットするかは運ゲー 😇
31 補⾜スライド
32 今回利⽤したsqlファイルの⽣成⽅法 import random # 生成するデータの数 num_records = 100000 #
例として10万レコードを生成 departments = ['Engineering', 'HR', 'Marketing', 'Sales', 'Finance'] names = ['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', 'Grace', 'Hannah', 'Ivan', 'Julia'] with open('employees_data.sql', 'w') as file: file.write("USE test_db;\n") # 使用するデータベース(test_db)を指定 file.write("INSERT INTO employees (name, department, salary) VALUES\n") # レコードを生成 for i in range(num_records): name = random.choice(names) department = random.choice(departments) salary = random.randint(30000, 120000) # 最後のレコード以外はカンマを付ける if i < num_records - 1: file.write(f"('{name}', '{department}', {salary}),\n") else: file.write(f"('{name}', '{department}', {salary});\n")
33 参考⽂献 • 達人に学ぶDB設計 徹底指南書 ~初級者で終わりたくないあなたへ ◦ https://www.shoeisha.co.jp/book/detail/9784798124704 • 計算量同士の比較と入力サイズによる比較
◦ https://algo-logic.info/complexity-compare/ • MySQLでプライマリキーをUUIDにする前に知っておいて欲しいこと ◦ https://techblog.raccoon.ne.jp/archives/1627262796.html • UUIDとULIDの違いと種類を解説【ULID=ソート可能なUUID?】 ◦ https://giginc.co.jp/blog/giglab/uuid-ulid • ソート可能なUUID互換のulidが便利そう ◦ https://qiita.com/kai_kou/items/b4ac2d316920e08ac75a • MySQLバッファプールについて ◦ https://dev.mysql.com/doc/refman/8.0/ja/innodb-buffer-pool.html • 参照の局所性 ◦ https://ja.wikipedia.org/wiki/%E5%8F%82%E7%85%A7%E3%81%AE%E5%B1%80%E6%89 %80%E6%80%A7
34 Thank you