Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習関連の開発を 効率化した話
Search
nishiba
May 30, 2019
Technology
7
5.2k
機械学習関連の開発を 効率化した話
nishiba
May 30, 2019
Tweet
Share
More Decks by nishiba
See All by nishiba
gokartを作った話
nishiba
2
7.7k
m3 ai team
nishiba
36
45k
Graph Convolutional Networksを使った 推薦システム
nishiba
6
8.1k
エムスリーの機械学習チームビルディングの考え方
nishiba
12
6.9k
Graphの推薦システムへの応用
nishiba
6
8.5k
AI・機械学習チームにおけるデータパイプライン構築
nishiba
8
26k
エムスリーにおける 機械学習活用事例と開発の効率化
nishiba
3
6.6k
医療用語に注目した文書の類似度計算
nishiba
6
4.7k
WSDM 2018 論文読み会 Hyperbolic Representation Learning for Fast and Efficient Neural Qestion Answering
nishiba
0
1.6k
Other Decks in Technology
See All in Technology
強いチームと開発生産性
onk
PRO
35
11k
TypeScriptの次なる大進化なるか!? 条件型を返り値とする関数の型推論
uhyo
2
1.7k
100 名超が参加した日経グループ横断の競技型 AWS 学習イベント「Nikkei Group AWS GameDay」の紹介/mediajaws202411
nikkei_engineer_recruiting
1
170
マルチモーダル / AI Agent / LLMOps 3つの技術トレンドで理解するLLMの今後の展望
hirosatogamo
37
12k
SSMRunbook作成の勘所_20241120
koichiotomo
3
160
個人でもIAM Identity Centerを使おう!(アクセス管理編)
ryder472
4
230
適材適所の技術選定 〜GraphQL・REST API・tRPC〜 / Optimal Technology Selection
kakehashi
1
680
【Pycon mini 東海 2024】Google Colaboratoryで試すVLM
kazuhitotakahashi
2
530
[CV勉強会@関東 ECCV2024 読み会] オンラインマッピング x トラッキング MapTracker: Tracking with Strided Memory Fusion for Consistent Vector HD Mapping (Chen+, ECCV24)
abemii
0
220
Taming you application's environments
salaboy
0
190
AGIについてChatGPTに聞いてみた
blueb
0
130
Lambdaと地方とコミュニティ
miu_crescent
2
370
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
We Have a Design System, Now What?
morganepeng
50
7.2k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
Measuring & Analyzing Core Web Vitals
bluesmoon
4
130
Product Roadmaps are Hard
iamctodd
PRO
49
11k
RailsConf 2023
tenderlove
29
900
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Why Our Code Smells
bkeepers
PRO
334
57k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
How To Stay Up To Date on Web Technology
chriscoyier
788
250k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Imperfection Machines: The Place of Print at Facebook
scottboms
265
13k
Transcript
機械学習関連の開発を 効率化した話 エムスリー株式会社 西場正浩(@m_nishiba) MLPP #2 会場&フードスポンサー: SmartNews
自己紹介 • エムスリー株式 • AI・機械学習チーム • 機械学習エンジニア • SNS ◦
https://twitter.com/m_nishiba ◦ https://note.mu/nishiba • 興味あるキーワード ◦ 自然言語処理、推薦システム、開発効率化、チームマネジメント、 PdM • 資料は公開済み。手元でも確認しながら聞いてください ~
今日話すこと • エムスリーの開発体制。 ◦ 1アルゴリズム、1MLエンジニア ◦ 1MLエンジニア、複数アルゴリズム • 開発で感じた難しさ。 ◦
データ取得のための SQL ◦ クラス設計 ◦ コードレビュー ◦ パラメータとモデル・データの紐づけ管理 ◦ 前処理後データの再利用 ◦ データのバージョニング • 行った解決方法。 ◦ luigiをラップしたgokart(GitHubで公開。pip install gokart) ◦ データ取得タスク群の m3mushroom(非公開)
エムスリーの機械学習チームの開発体制 • 状況 ◦ MLエンジニアは3人程度 ◦ 設立2年弱 ◦ プロダクト・プロジェクト数は 19程度
◦ 自然言語処理、推薦がメイン • 基本は1アルゴリズム、1MLエンジニア ◦ 相談や議論はする ◦ 責任を持つ人、実装する人は基本的に 1人 • 1MLエンジニア、複数アルゴリズム ◦ 同時に複数のアルゴリズムの改善や開発を行うこともある。 ◦ 新規開発中に他のプロジェクトが ABテスト中&要改善
プロダクトの開発順序 • なるべく共通部分が多くなるようにプロダクトを作る。 ◦ やらない例: 機械翻訳+非テキスト系のリコメンド +画像診断 ◦ やる例: テキスト系のリコメンド、テキストの類似度、テキストのタグ付け
開発で感じた難しさ
データ取得が大変 • データが色んなところにある ◦ オラクル、Postgres、BigQuey、社内API ◦ 2000年創業で20サービス以上あるので・・・ • 色々Joinやfilterしないとモデル開発上意味のあるデータにならない。 •
サービス横断で分析するためにはフォーマットが揃っておらず色々加工する必要がある。 ◦ すごいSQLを書かないと・・・
• そもそも設計難しい・・・ • 他のプロジェクトでも使えるようにしたい。 • システム開発よりMLに強みがある新卒も入社後すぐに開発する (本番で動く) ◦ 1アルゴリズム、1MLエンジニア •
おれおれクラス群のコードレビュー &保守は辛い・・・ • ログ設計難しい、解読辛い。 設計が難しい
パラメータとデータ/モデルの管理が大変 • pickleを作ったときのパラメータ等を一緒に管理するのが大変 ◦ e.g. 極端の話、雑なナンバリングになる ▪ data/some_data.pkl ▪ data/some_data_1.pkl
▪ data/some_data_20190530.pkl • (試行錯誤中)昨日、めっちゃ良いスコアが出たけど再現できない !!(パラメータが分からない ) • ちょっと前に他のプロジェクトで作った word2vecを使いたいけど大丈夫だよね ?? • 本番でエラーがでたけど再現できない ! DB変わっている??
解決方法
パイプラインのためのパッケージ Luigi を使う • バッチ処理のためのパイプラインを構築するためのパッケージ ◦ Spotifyが作っているOSS ◦ https://github.com/spotify/luigi Task
BiqQuey API DB S3
• Luigiを使うことのメリット ◦ classの設計から解放される ! ▪ requires, output, runの3つの関数を書けば良い !
◦ 設計が統一される!! ▪ 新しいメンバーもすぐにキャッチアップできる !! ▪ コードレビューが楽々 ◦ ログがすごく読みやすい ! ▪ どのタスクが成功したか ?失敗したかが一目瞭然 ◦ 修正後の再実行が簡単 ▪ 途中のタスクが失敗 → コードを修正 → 落ちたところから実行される。
さらにgokartを開発 • Luigiをラップしたパッケージ ◦ エムスリーが作っている OSS ◦ https://github.com/m3dev/gokart • gokartを使うことのメリット
◦ 更にコード量が減らせる ▪ 保守コスト等も減少 ▪ 特にファイルの入出力周り ◦ (中間)出力ファイルの管理が楽 ▪ タスクのパラメータによりユニークなファイル名になる ▪ ファイルが生成されたときのパラメータが保持される ◦ 各タスクの実行時間を確認できる。 ◦ 出力をs3にするかローカルにするかをパラメータ一つで切り替え ◦ ジョブ終了時にslackに通知。
データ取得を共通タスク化 • gokartを使ってデータ取得を共通タスク化した。 ◦ e.g. DownloadNewsItems( from_date=date(2019, 1, 1), to_date=date(2019,
1, 31)) ◦ SQL等を意識する必要がない。 ◦ Pandas.DataFrameとして出力される。 Task BiqQuey API DB
質問どうぞ〜