Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ディメンショナルモデリングのすすめ
Search
Ojima Hikaru
July 27, 2018
Technology
8
4.7k
ディメンショナルモデリングのすすめ
Developer Summit 2018 Summer
Ojima Hikaru
July 27, 2018
Tweet
Share
More Decks by Ojima Hikaru
See All by Ojima Hikaru
家族の思い出を形にする 〜 1秒動画の生成を支えるインフラアーキテクチャ
ojima_h
3
1.9k
Railsの限界を超えろ!「家族アルバム みてね」の画像・動画の大規模アップロードを支えるアーキテクチャの変遷
ojima_h
5
790
Podのオートスケーリングに苦戦し続けている話
ojima_h
1
340
モンスターストライクを支えるデータ分析基盤と準リアルタイム集計
ojima_h
7
5.8k
データ分析基盤の変遷とデータレイクの作り方
ojima_h
2
1.9k
Other Decks in Technology
See All in Technology
もう外には出ない。より快適なフルリモート環境を目指して
mottyzzz
11
8.5k
「REALITY」3Dアバターシステムの7年分の拡張の歴史について
gree_tech
PRO
0
120
生成AI時代のセキュアコーディングとDevSecOps
yuriemori
0
150
OSSで50の競合と戦うためにやったこと
yamadashy
3
930
Introduction to Bill One Development Engineer
sansan33
PRO
0
300
ソフトウェアエンジニアの生成AI活用と、これから
lycorptech_jp
PRO
0
820
AI時代の開発を加速する組織づくり - ブログでは書けなかったリアル
hiro8ma
1
240
React19.2のuseEffectEventを追う
maguroalternative
2
590
JSConf JPのwebsiteをGatsbyからNext.jsに移行した話 - Next.jsの多言語静的サイトと課題
leko
2
180
Claude Codeを駆使した初めてのiOSアプリ開発 ~ゼロから3週間でグローバルハッカソンで入賞するまで~
oikon48
10
5.3k
Azureコストと向き合った、4年半のリアル / Four and a half years of dealing with Azure costs
aeonpeople
1
250
Biz職でもDifyでできる! 「触らないAIワークフロー」を実現する方法
igarashikana
3
1.3k
Featured
See All Featured
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Optimizing for Happiness
mojombo
379
70k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Writing Fast Ruby
sferik
629
62k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
610
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
A designer walks into a library…
pauljervisheath
209
24k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Git: the NoSQL Database
bkeepers
PRO
431
66k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
190
55k
Transcript
©XFLAG ディメンショナル モデリングの勧め
©XFLAG About Me 生島 光 株式会社ミクシィ XFLAG スタジオ 解析グループ データ分析基盤の開発・運用
GitHub: ojima-h Twitter: @ojima_h Facebook: hikaru.ojima
©XFLAG © XFLAG
©XFLAG 今日話すこと 使いやすいデータウェアハウス を手に入れるために ディメンショナル・モデリング を取り入れてみたお話
©XFLAG Why Dimensional Modeling?
©XFLAG BEFORE DB App Redshift APIログ 抽出 そのまま 分析チーム 依頼
作業待ち
©XFLAG BEFORE DB App Redshift APIログ 抽出 そのまま 分析チーム Zeppelin
©XFLAG ステージのクリア数を数え たいんだけど それなら striker_stages っていうテーブルの state が 2 になってる行を数え
ればいいですよ なにそれ意味わかんない state の詳しい説明は サーバーの仕様書に書い てありますよ
©XFLAG PROBLEM • 仕様書を読まないと分析できない
©XFLAG ステージのカテゴリごとの プレイ数を数えたいんだ けど それなら stage_flag って いうカラムの 1ビット目を見たらわかり ますよ
なにそれ意味わかんない 詳しいことは サーバーのコード読めば わかるんですけどね
©XFLAG PROBLEM • 仕様書を読まないと分析できない • コードを読まないと分析できない
©XFLAG マルチプレイ数を数えたい んだけど それなら striker_stages テーブルを使えばいい ですね。 このテーブルは自己参 照テーブルになっている のでこのカラムで
Group By して自分自身 に結合クァwせdrftgyふ じこlp; ・・・
©XFLAG PROBLEM • 仕様書を読まないと分析できない • コードを読まないと分析できない • 複雑なテーブル構造
©XFLAG キャンペーン施策のROI の算出に必要な値が欲し い 結構大変そうなので、ク エリのテンプレート作って 後で調整できるようにして おきますね
©XFLAG 300行くらいの SQL
©XFLAG PROBLEM • 仕様書を読まないと分析できない • コードを読まないと分析できない • 複雑なテーブル構造 • 長すぎる
SQL
©XFLAG そうだ! サマリテーブルを作ろう!
©XFLAG 〇〇っていう分析がしたい わかりましたサマリテーブ ル作ります △△っていう分析がしたい この前作ったサマリテー ブルは使えなさそうです ね。 わかりましたサマリテーブ ル作ります
〜〜っていう分析がしたい この前作ったサマリテーブ ルは使えな(以下略
©XFLAG PROBLEM • 仕様書を読まないと分析できない • コードを読まないと分析できない • 複雑なテーブル構造 • 長すぎる
SQL • 乱立する謎のサマリデータ
©XFLAG BI ツールは 助けてくれない
©XFLAG PROBLEM • 仕様書を読まないと分析できない • コードを読まないと分析できない • 長すぎる SQL •
複雑なテーブル構造 • 乱立する謎のサマリデータ Dimensional Modeling が 解決してくれるかも
©XFLAG Introduction to Dimensional Modeling
©XFLAG データ分析の流れ ETL 整形 ロード 要件定義 目的 分析手法 ゴール データ収集
サーバーログ DB 分析 Σ 自動化 Data Warehouse Data Lake
©XFLAG Data Warehouse ◦ すぐに分析に取りかかれるデータ ◦ どんな分析にも使える柔軟性 業務用データベースとは求められるも のが違う (e.g.
正規化 )
©XFLAG Dimensional Modeling Data Warehouse の要件に合わせたテーブル設計
©XFLAG Dimensional Modeling is... ◦ Ralph Kimball さんが 20年以上前に提唱した DWH
の設計手法
©XFLAG FACT DIMENSIONS DIMENSIONS DIMENSIONS DIMENSIONS イベント 状態 e.g. ゲームのプレイログ
FACTに対する 説明 e.g プレイした ステージに関する情報 DIMENSIONS Star Schema
©XFLAG 現実世界 FACT DIMENSIONS DIMENSIONS DIMENSIONS DIMENSIONS Dimensional Modeling
©XFLAG 設計の手順
©XFLAG 1. ビジネスプロセスを選ぶ 2. 粒度を決める 3. Dimensionテーブルを決める 4. Factテーブルを決める 4
Steps
©XFLAG 1. ビジネスプロセスを選ぶ 2. 粒度を決める 3. Dimensionテーブルを決める 4. Factテーブルを決める 4
Steps
©XFLAG ビジネスプロセス = お客さんに提供しているサービス・機能(仮) 例)「ゲームをプレイする」 ◦ ビジネスプロセスの内容を言語化 ◦ 使えるデータを確認
©XFLAG 1. ビジネスプロセスを選ぶ 2. 粒度を決める 3. Dimensionテーブルを決める 4. Factテーブルを決める 4
Steps
©XFLAG 粒度 対象のビジネスプロセスをどこまで詳細 なレベルで分析するのか ビジネスの言葉で表現 イベント ファクトテーブルの1行 ?
©XFLAG 粒度の例 1人のユーザーが 1回ゲームをプレイした
©XFLAG 粒度の例 マルチプレイの場合 vs. 3レコード ユーザー に関する分析 1レコード ゲームプレイ に関する分析
©XFLAG 粒度 粒度の決め方によって 分析できる事柄も、その後の設計も 全然変わってくる
©XFLAG 1. ビジネスプロセスを選ぶ 2. 粒度を決める 3. Dimensionテーブルを決める 4. Factテーブルを決める 4
Steps
©XFLAG Dimensions WHEN WHERE WHO WHAT WHY HOW about Facts
ビジネスの 言葉で
©XFLAG 1. ビジネスプロセスを選ぶ 2. 粒度を決める 3. Dimensionテーブルを決める 4. Factテーブルを決める 4
Steps
©XFLAG Facts イベントに対する計測値 e.g. ◦ ゲームのクリア時間 ◦ ゲームのスコア ◦ 購入した商品の値段
足したり掛けたりできるもの
©XFLAG 1. ビジネスプロセスを選ぶ 2. 粒度を決める 3. Dimensionテーブルを決める 4. Factテーブルを決める 4
Steps
©XFLAG メリット
©XFLAG Good Points ◦ クエリのパフォーマンスが向上 ◦ JOIN が少なくなるため ◦ 分析軸を柔軟に追加できる
◦ Dimension テーブルを好きなだけ拡張 ◦ データを理解しやすい ◦ ビジネスプロセスを反映したテーブル設計
©XFLAG ディメンションテーブルが充実 分析がパワーアップ
©XFLAG Good Points ◦ クエリのパフォーマンスが向上 ◦ JOIN が少なくなるため ◦ 分析軸を柔軟に追加できる
◦ Dimension テーブルを好きなだけ拡張 ◦ データを理解しやすい ◦ ビジネスプロセスを反映したテーブル設計
©XFLAG データの理解 業務システム システムの実装を表現 データウェアハウス ビジネスプロセスを表現 ステージ ステージ グループ 1
N ステージ 非正規化 ゲーム開始 ゲーム終了 LEFT JOIN ゲームプレイ
©XFLAG やってみた
©XFLAG 課題 ◦ データを理解するのが難しい ◦ 汎用的のないサマリテーブルたち
©XFLAG 作戦 できるところからちょっとずつ 重要なビジネスプロセスから順番に着手していっ た
©XFLAG 大事だったこと ビジネスプロセスの分析や 粒度をきちんと決めたこと Data Warehouse 全体の整合性を保つ ことができた
©XFLAG (参考) ◦ Enterprise Bus Matrix ◦ Confirmed Dimensions
©XFLAG 結果 ◦ シンプルなテーブル構造 ◦ 汎用的なサマリテーブル ◦ セルフサービスなデータ分析
©XFLAG 体感では ½ 〜 ⅓ くらい
©XFLAG 結果 ◦ シンプルなテーブル構造 ◦ 汎用的なサマリテーブル ◦ セルフサービスなデータ分析
©XFLAG つらかったこと
©XFLAG つらかったこと ◦ 設計するの大変 ◦ 時間がかかりすぎるリスク ⇒ 設計コストと得られるメリットの比較 生データとの併用も
©XFLAG つらかったこと ◦ Hive や Redshift などでは難しい部分も ◦ データ更新 ◦
実行効率 ⇒ 妥協も大事
©XFLAG 美味しいところだけ いただくの精神
©XFLAG https://www.amazon.co.jp/dp/B00DRZX6XS 参考
©XFLAG テーブル設計は基礎体力 日々の分析業務や 機械学習プロジェクトを 加速させる
©XFLAG Thank You
©XFLAG Credits Special thanks to all the people who made
and released these awesome resources for free: ◦ Icon made by Freepik from flaticon ◦ Photographs by Unsplash