Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ分析基盤の変遷とデータレイクの作り方
Search
Ojima Hikaru
April 21, 2018
Technology
1
1.8k
データ分析基盤の変遷とデータレイクの作り方
Battle Conference U30 #2018
Ojima Hikaru
April 21, 2018
Tweet
Share
More Decks by Ojima Hikaru
See All by Ojima Hikaru
Podのオートスケーリングに苦戦し続けている話
ojima_h
1
270
ディメンショナルモデリングのすすめ
ojima_h
7
4.5k
モンスターストライクを支えるデータ分析基盤と準リアルタイム集計
ojima_h
6
5.6k
Other Decks in Technology
See All in Technology
今年一年で頑張ること / What I will do my best this year
pauli
1
190
Fabric 移行時の躓きポイントと対応策
ohata_ds
1
140
スケールし続ける事業とサービスを支える組織とアーキテクチャの生き残り戦略 / The survival strategy for Money Forward’s engineering.
moneyforward
0
250
The future we create with our own MVV
matsukurou
0
1.8k
ゼロからわかる!!AWSの構成図を書いてみようワークショップ 問題&解答解説 #デッカイギ #羽田デッカイギおつ
_mossann_t
0
1.3k
テストを書かないためのテスト/ Tests for not writing tests
sinsoku
1
160
12 Days of OpenAIから読み解く、生成AI 2025年のトレンド
shunsukeono_am
0
1.1k
SpiderPlus & Co. エンジニア向け会社紹介資料
spiderplus_cb
0
680
.NET AspireでAzure Functionsやクラウドリソースを統合する
tsubakimoto_s
0
160
20240522 - 躍遷創作理念 @ PicCollage Workshop
dpys
0
310
ソフトウェア開発における「パーフェクトな意思決定」/Perfect Decision-Making in Software Development
yayoi_dd
2
2.7k
Unlearn Product Development - Unleashed Edition
lemiorhan
PRO
2
170
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
67
4.5k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.4k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.7k
Faster Mobile Websites
deanohume
305
30k
Building a Scalable Design System with Sketch
lauravandoore
460
33k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.5k
Embracing the Ebb and Flow
colly
84
4.5k
Code Reviewing Like a Champion
maltzj
521
39k
Transcript
L FG A
• S')1 0(6T • L>A9 XFLAG CDB=
!?NRK • GRD /%Q$7 • GRDO:>3GRD;<8H;C-,/ ACFM • P?/5#2(4&"Q 1+/GRDJPR • BIERN/ • @RIC. *6 / • GitHub: ojima-h 2
4 DAUKPI !
5
6 • • 2TB/day
30 → 1000
7 • 5
→ 100
− 8 S3
− 9 S3
− 10 Redshift
− 11
12 Data Lake Architecture
Data Lake " • -4,&$#!-4,+.' • -4,&% "%,(13*+)40&% !
(Schema on Read) • Data Lake -4,& DWH 24/$ $% 13
Data Lake 14 Hive Metastore
Hive Metastore 15
Hive " • Hadoop%(47-:.69!; • SQL ,*7&$S3 # HDFS !1:/
#1:/ & • ORC !3')83+:502& 16
Hive Metastore • S3/HDFS * "-SQL /1,&(.&0 (.&%)! •
,&(.& • * "- • * "-*#.+') • (.&%$.+ • 17
Hive Metastore • EMR ! Hive Metastore
! • • EMR 30 18
Hive Metastore • Hive Metastore MySQL
• Hive Metastore (HCatalog) server • EMR 5 19
Hive Metastore S3 20
Hive Metastore • ' • '"%
• 'ORC • '!&' ' !'#$$ 21
Hive Metastore • Hive Metastore S3 "
S3" !" 22
Hive Metastore * • "+$%- :>:>(*+ • 8C6*/,# •
3C;4' Hive DB / • Hive ).!% S3&*8C6/ • Hive &.( 8C6)-*@C@/ 23 3C;4 D=A49B<019?C2BBE 8C6579 8C6 Hive Database Table Partition S3 s3://BUCKET/warehouse/SERVICE.db/ s3://BUCKET/warehouse/SERVICE.db/TABLE/ s3://BUCKET/warehouse/SERVICE.db/TABLE/y=YYYY/m=MM/d=DD/
Hive Metastore • %)" &'&'%)" • &$#
! ( 24
Hive Metastore 1. Hive Metastore
25
Hive Metastore 1. Hive Metastore
2. 26
Hive Metastore 1. Hive Metastore
2. 3. Hive Metastore 27
Hive Metastore 1. Hive Metastore
2. 3. Hive Metastore 4. 28
Hive Metastore ! 1. ),(! $ Hive Metastore # 2.
),($'*, 3. Hive Metastore ! $ 4. ),($ &%+ $ "),($ 29
Hive Metastore 30
Hive Metastore • Hive Redshift "%!$%# • Redshift
COPY "%! csv+gzip • Hive "%! ORC • Redshift csv+gzip Hive ORC ⇒ Redshift Spectrum 31
Redshift Spectrum • Redshift S3(#$+ &%*" • ',)+
Hive Metastore ! Hive ',)+" 32 CREATE EXTERNAL SCHEMA schema_name FROM HIVE METASTORE DATABASE 'database_name’ URI 'hive_metastore_uri’;
Hive Metastore • Redshift Hive 33 INSERT
INTO ‘Redshift ’ SELECT … FROM ‘Hive ’ WHERE y=YYYY AND m=MM AND d=DD;
Hive Metastore • Redshift Spectrum
Hive Metastore • Spark SQL • Presto • Athena • Flink 34
Hive Metastore Hive Metastore S3 Hive,
Redshift Spectrum , Spark 35
36
($) • Hive Metastore '25103-$251.4/4& • Hive Metastore , $"
Data Lake , !$# 251&*251&%+$#! Hive Metastore , +$# Data Lake , "$#(!6 37
None