$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TensorFlow on Mobile
Search
Arata Furukawa
September 11, 2016
Technology
0
160
TensorFlow on Mobile
「9/11 Deep Learning 学生無料勉強会@GMO Yours」
http://jagsc.connpass.com/event/36393/
上記イベントで発表したスライドです。
Arata Furukawa
September 11, 2016
Tweet
Share
More Decks by Arata Furukawa
See All by Arata Furukawa
20251007: What happens when multi-agent systems become larger? (CyberAgent, Inc)
ornew
1
650
2025-04-24 "Manga AI Understanding & Localization" Furukawa Arata (CyberAgent, Inc)
ornew
2
1.1k
TensorFlow Liteで機械学習Androidアプリを超簡単に作る
ornew
4
7.6k
みんなラズパイでTensorFlow Liteしよう?
ornew
2
2.5k
TensorFlowで作ったAIをAndroidアプリで実行する
ornew
0
1.7k
The Future of Mobile × ML
ornew
0
730
Let's use TensorFlow on Android!
ornew
0
550
TensorFlow on Android
ornew
1
2.4k
The motion recognition from the sensor values for wearable terminal
ornew
0
85
Other Decks in Technology
See All in Technology
エンジニアリングマネージャー はじめての目標設定と評価
halkt
0
250
[JAWS-UG 横浜支部 #91]DevOps Agent vs CloudWatch Investigations -比較と実践-
sh_fk2
1
240
Security Diaries of an Open Source IAM
ahus1
0
130
ログ管理の新たな可能性?CloudWatchの新機能をご紹介
ikumi_ono
0
430
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
0
190
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
680
Kiro Autonomous AgentとKiro Powers の紹介 / kiro-autonomous-agent-and-powers
tomoki10
0
280
乗りこなせAI駆動開発の波
eltociear
1
940
Oracle Technology Night #95 GoldenGate 26ai の実装に迫る1
oracle4engineer
PRO
0
150
AI駆動開発によるDDDの実践
dip_tech
PRO
0
440
Sansanが実践する Platform EngineeringとSREの協創
sansantech
PRO
2
480
モバイルゲーム開発におけるエージェント技術活用への試行錯誤 ~開発効率化へのアプローチの紹介と未来に向けた展望~
qualiarts
0
640
Featured
See All Featured
Code Review Best Practice
trishagee
74
19k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
Fireside Chat
paigeccino
41
3.7k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.8k
Become a Pro
speakerdeck
PRO
30
5.7k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Producing Creativity
orderedlist
PRO
348
40k
Transcript
Tensorflow on Mobile 東海大学 理学部 日本Androidの会 学生部 古川新
古川 新 Arata Furukawa • 東海大学 理学部 ピカピカの1年生 • プログラミング、イラスト、デザインが趣味
• なんでもします!
Tensorflowとは
人工知能ライブラリでしょ、 そのくらい知ってるよ
厳密には 「人工知能(機械学習)のライブラリ」 は正しくない。
確かにTensorflowは、機械学習の研究を行って いたGoogleのエンジニアや研究者によって開発 されました。 しかし、Tensorflow自体は機械学習に限定され た用途で使用されるものではありません。
“ TensorFlow™ is an open source software library for numerical
computation using data flow graphs.
データフローグラフ型 汎用数値演算ライブラリ Deep Learningは莫大な計算資源を要求します。 その要求に応えるためには、抽象的でスケーラビリティかつ ポータビリティな、非同期並列で実行可能な数値演算の仕組 みが必要でした。 Tensorflowはまさにそれを実現するライブラリです。 機械学習に限らず、このライブラリ自体はどんな計算であって も応用可能です。
(オープンソース・ソフトウェア)
Tensorflow Graph Tensorflowはあらゆる数学演算をノードとエッジの有向グラ フで表現します。 また、TensorflowグラフはProtocol Buffers形式で シリアライズできます。 シリアライズされた抽象グラフは他のプラットフォーム・アーキ テクチャ・デバイスでも扱えます。
Deep Neural Networks ディープニューラルネットワーク(DNN)は巨大な行列演算のグ ラフで表現できます。 よって、DNNも同様にTensorflowグラフとして表現すること ができます。
Distributed TensorFlow Tensorflowの真価は分散処理にあります。Tensorflowでは データ並列が透過的に行なえます。 コードにほとんど手を加えることなく、マシンリソースにスケー ルした適切なスケジューリングの最適化などを全て自動で行 い、演算をスケールアウトします。 高度な分散処理数値演算ライブラリ、それがTensorflowの真 の姿です。
「Large Scale Distributed Systems for Training Neural Networks (Jeff Dean
& Oriol Vinyals Google)」より引用
学習と実行の 非対称性
一般的な演算コスト 学習コスト > 実行コスト
学習の演算コスト 1. 規模にも依るが、膨大な回数の 反復学習が必要←ほぼこれ 2. 誤差の逆伝搬など学習用の 計算量が多い 一般的に知られているように、訓練には 莫大な計算資源が必要となる。 「AlphaGo
の試合に用いられた Google のディープラーニング専用サーバ」 Google Cloud Platform Japan Blogより
実行の演算コスト 1. 反復実行 →要らない 2. 誤差逆伝搬したりする分の計算量 →要らない
学習に莫大なコストがかかるニューラルネットワークも、 モバイルで動きます
“ TensorFlow Android Camera Demo https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
GitHubのTensorflowリポジトリに AndroidでTensorflowを 実行するサンプルが公開されている。
http://goo.gl/ CtLXYm ※使用は自己責任でお願いします ※他の場所にアップロードしたり しないでください
サンプルビルドについて 何か話すことがあれば話す (未定)
モバイルアプリに 組み込んでみた
None
Tensorflowによる リバーシAI Androidアプリ
Android Firebase プレイデータを自動送信 AIが定期的に自動更新される Tensorflo w
Data Server Run Tensorflow Firebase Realtime Database C++ Java Protocol
Buffers JNI Reversi OSUSHIの構成:Androidアプリ側 HTTPS Android App
True Portability Tensorflowグラフは非常にポータビリティが高い。 配布されたモデルを利用したり、更にそれを学習させたりする ことが容易です。
「モデルさえあれば…」 Tensorflow学習済みモデルの配布/利用は容易です。 抽象化されたグラフを表現したProtocol Buffers形式のテキ ストorバイナリデータでしかないからです。 実際に配布されているモデルも出始めており、今後増加する と思われます。 もしかしたら、モデルリポジトリなんてものが今後出てくるか も?
新しいアプリ開発の形? ニューラルネットワークは処理能力に乏しいモバイルプラット フォームでも利用できます。 人工知能はモデルさえあれば一般的なアプリに組み込むこと が可能な段階にあるのです。
ご清聴ありがとうございました。