Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Principal type-schemes for functional programs
Search
Phil Freeman
June 28, 2017
Programming
0
290
Principal type-schemes for functional programs
Phil Freeman
June 28, 2017
Tweet
Share
More Decks by Phil Freeman
See All by Phil Freeman
The Future Is Comonadic!
paf31
14
4.5k
Incremental Programming in PureScript
paf31
3
950
An Overview of the PureScript Type System
paf31
5
1.8k
Fun with Profunctors
paf31
3
1.1k
Intro to psc-package
paf31
0
130
Stack Safety for Free
paf31
0
270
Other Decks in Programming
See All in Programming
GoとPHPのインターフェイスの違い
shimabox
2
190
『GO』アプリ データ基盤のログ収集システムコスト削減
mot_techtalk
0
130
バックエンドのためのアプリ内課金入門 (サブスク編)
qnighy
8
1.8k
AWS Organizations で実現する、 マルチ AWS アカウントのルートユーザー管理からの脱却
atpons
0
150
法律の脱レガシーに学ぶフロントエンド刷新
oguemon
5
740
Djangoアプリケーション 運用のリアル 〜問題発生から可視化、最適化への道〜 #pyconshizu
kashewnuts
1
250
GitHub Actions × RAGでコードレビューの検証の結果
sho_000
0
270
CSS Linter による Baseline サポートの仕組み
ryo_manba
1
110
Honoをフロントエンドで使う 3つのやり方
yusukebe
7
3.4k
SwiftUIで単方向アーキテクチャを導入して得られた成果
takuyaosawa
0
270
一休.com のログイン体験を支える技術 〜Web Components x Vue.js 活用事例と最適化について〜
atsumim
0
550
データの整合性を保つ非同期処理アーキテクチャパターン / Async Architecture Patterns
mokuo
50
17k
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Embracing the Ebb and Flow
colly
84
4.6k
The Invisible Side of Design
smashingmag
299
50k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Fireside Chat
paigeccino
34
3.2k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.2k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Building Applications with DynamoDB
mza
93
6.2k
Build The Right Thing And Hit Your Dates
maggiecrowley
34
2.5k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
1k
Facilitating Awesome Meetings
lara
52
6.2k
Transcript
Principal type-schemes for functional programs Luis Damas and Robin Milner
(POPL `82)
Agenda • Slides • Code
ML • Meta Language for LCF • Type inference •
Influence on Haskell, Rust, F#, OCaml, ... • “Sweet spot” in type system design
ML letrec f xs = if null xs then nil
else snoc (f (tl xs)) (hd xs) What type does this function have? null : ∀ ( list → bool) snoc : ∀ ( list → → list) hd, tl : ∀ ( list → ) nil : ∀ ( list)
ML What about: let s x y z = x
z (y z) ?
Type Inference f : ∀ ( list → list) •
Given f, how can we infer this type? • What does it even mean for a value to have a type? • How can we be sure we have the most general type?
Lambda Calculus Expressions e: • Identifiers: , , … •
Applications: e e’ • Abstractions: . e • Let bindings: let = e in e’
Lambda Calculus For example: . . . . let =
. . in
Types Monotypes : • Variables: • Primitives: • Functions: →
Type Schemes Type schemes : • Monomorphic: • Polymorphic: ∀
. Type schemes are types with identifiers bound by ∀ at the front.
Substitutions Mappings from variables to types • Can instantiate type
schemes using substitutions • Gives a simple subtyping relation on type schemes
Semantics Construct a semantic domain (CPO) V containing • Primitives
• Functions • An error element and a semantic function : e → (Id → V) → V
Semantics Identify types with subsets of V Define the judgment
A ╞ e : when (∀ ( : ’) ∈ A. ∈ ’) ⇒ e ∈
Declarative System Variable rule:
Declarative System Application rule:
Declarative System Abstraction rule:
Declarative System Let rule:
Declarative System Instantiation rule:
Declarative System Generalization rule:
Soundness If A e : then A ╞ e :
“Static behavior determines dynamic behavior”
Example Prove: . : ∀ . ( → → )
→ →
Algorithm W • The inference rules do not translate easily
into an algorithm (why not?) • Introduce w : Exp → Env → (Env, )
Algorithm W • W attempts to build a substitution, bottom-up
• W can fail with an error if there is no valid typing • Intuition: ◦ Collect constraints ◦ Then solve constraints • Reality: W is the fusion of these two steps • See the code!
Unification • Unification gives local information about types • We
assemble a global solution from local information
Unification Example: ( → ) ~ (( → ) →
) ~ ( → ) ~ ~ ( → )
Occurs Check Prevents inference of infinite types w( . ,
nil) = error! Can’t unify ~ if occurs in the body of . E.g. ~ → ~ ((… → ) → ) →
Soundness If w(A, e) = (S, ) then A e
: “Algorithm W constructs typing judgments”
Completeness If A e : then w(A, e) constructs a
typing judgment for e which generalises the above. “Algorithm W constructs principal types”
Further Reading More type systems • System F, F⍵ •
Rank-N types • Type Classes • Dependent Types • Refinement Types Other approaches • Constraints • Bidirectional typechecking • SMT See TAPL & ATAPL!
Acknowledgments DHM axioms reproduced from Wikipedia under the CC-3.0 Attribution/ShareAlike
license