Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Principal type-schemes for functional programs
Search
Phil Freeman
June 28, 2017
Programming
0
280
Principal type-schemes for functional programs
Phil Freeman
June 28, 2017
Tweet
Share
More Decks by Phil Freeman
See All by Phil Freeman
The Future Is Comonadic!
paf31
14
4.5k
Incremental Programming in PureScript
paf31
3
940
An Overview of the PureScript Type System
paf31
5
1.8k
Fun with Profunctors
paf31
3
1.1k
Intro to psc-package
paf31
0
120
Stack Safety for Free
paf31
0
260
Other Decks in Programming
See All in Programming
CQRS+ES の力を使って効果を感じる / Feel the effects of using the power of CQRS+ES
seike460
PRO
0
240
[JAWS-UG横浜 #80] うわっ…今年のServerless アップデート、少なすぎ…?
maroon1st
0
100
shadcn/uiを使ってReactでの開発を加速させよう!
lef237
0
300
どうして手を動かすよりもチーム内のコードレビューを優先するべきなのか
okashoi
3
870
Fibonacci Function Gallery - Part 2
philipschwarz
PRO
0
210
カンファレンス動画鑑賞会のススメ / Osaka.swift #1
hironytic
0
170
GitHub CopilotでTypeScriptの コード生成するワザップ
starfish719
26
6k
毎日13時間もかかるバッチ処理をたった3日で60%短縮するためにやったこと
sho_ssk_
1
550
EC2からECSへ 念願のコンテナ移行と巨大レガシーPHPアプリケーションの再構築
sumiyae
3
590
ある日突然あなたが管理しているサーバーにDDoSが来たらどうなるでしょう?知ってるようで何も知らなかったDDoS攻撃と対策 #phpcon.2024
akase244
2
7.7k
ErdMap: Thinking about a map for Rails applications
makicamel
1
660
最近のVS Codeで気になるニュース 2025/01
74th
1
100
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
28
8.3k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Facilitating Awesome Meetings
lara
51
6.2k
How GitHub (no longer) Works
holman
312
140k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.5k
Building an army of robots
kneath
302
45k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Transcript
Principal type-schemes for functional programs Luis Damas and Robin Milner
(POPL `82)
Agenda • Slides • Code
ML • Meta Language for LCF • Type inference •
Influence on Haskell, Rust, F#, OCaml, ... • “Sweet spot” in type system design
ML letrec f xs = if null xs then nil
else snoc (f (tl xs)) (hd xs) What type does this function have? null : ∀ ( list → bool) snoc : ∀ ( list → → list) hd, tl : ∀ ( list → ) nil : ∀ ( list)
ML What about: let s x y z = x
z (y z) ?
Type Inference f : ∀ ( list → list) •
Given f, how can we infer this type? • What does it even mean for a value to have a type? • How can we be sure we have the most general type?
Lambda Calculus Expressions e: • Identifiers: , , … •
Applications: e e’ • Abstractions: . e • Let bindings: let = e in e’
Lambda Calculus For example: . . . . let =
. . in
Types Monotypes : • Variables: • Primitives: • Functions: →
Type Schemes Type schemes : • Monomorphic: • Polymorphic: ∀
. Type schemes are types with identifiers bound by ∀ at the front.
Substitutions Mappings from variables to types • Can instantiate type
schemes using substitutions • Gives a simple subtyping relation on type schemes
Semantics Construct a semantic domain (CPO) V containing • Primitives
• Functions • An error element and a semantic function : e → (Id → V) → V
Semantics Identify types with subsets of V Define the judgment
A ╞ e : when (∀ ( : ’) ∈ A. ∈ ’) ⇒ e ∈
Declarative System Variable rule:
Declarative System Application rule:
Declarative System Abstraction rule:
Declarative System Let rule:
Declarative System Instantiation rule:
Declarative System Generalization rule:
Soundness If A e : then A ╞ e :
“Static behavior determines dynamic behavior”
Example Prove: . : ∀ . ( → → )
→ →
Algorithm W • The inference rules do not translate easily
into an algorithm (why not?) • Introduce w : Exp → Env → (Env, )
Algorithm W • W attempts to build a substitution, bottom-up
• W can fail with an error if there is no valid typing • Intuition: ◦ Collect constraints ◦ Then solve constraints • Reality: W is the fusion of these two steps • See the code!
Unification • Unification gives local information about types • We
assemble a global solution from local information
Unification Example: ( → ) ~ (( → ) →
) ~ ( → ) ~ ~ ( → )
Occurs Check Prevents inference of infinite types w( . ,
nil) = error! Can’t unify ~ if occurs in the body of . E.g. ~ → ~ ((… → ) → ) →
Soundness If w(A, e) = (S, ) then A e
: “Algorithm W constructs typing judgments”
Completeness If A e : then w(A, e) constructs a
typing judgment for e which generalises the above. “Algorithm W constructs principal types”
Further Reading More type systems • System F, F⍵ •
Rank-N types • Type Classes • Dependent Types • Refinement Types Other approaches • Constraints • Bidirectional typechecking • SMT See TAPL & ATAPL!
Acknowledgments DHM axioms reproduced from Wikipedia under the CC-3.0 Attribution/ShareAlike
license