Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Principal type-schemes for functional programs
Search
Phil Freeman
June 28, 2017
Programming
0
300
Principal type-schemes for functional programs
Phil Freeman
June 28, 2017
Tweet
Share
More Decks by Phil Freeman
See All by Phil Freeman
The Future Is Comonadic!
paf31
14
4.6k
Incremental Programming in PureScript
paf31
3
960
An Overview of the PureScript Type System
paf31
5
1.9k
Fun with Profunctors
paf31
3
1.1k
Intro to psc-package
paf31
0
140
Stack Safety for Free
paf31
0
280
Other Decks in Programming
See All in Programming
マルチアカウント環境での、そこまでがんばらない RI/SP 運用設計
wa6sn
0
600
ローコードサービスの進化のためのモノレポ移行
taro28
1
330
なぜselectはselectではないのか
taiyow
2
310
20250326_生成AIによる_レビュー承認システムの実現.pdf
takahiromatsui
17
5.6k
爆速スッキリ! Rspack 移行の成果と道のり - Muddy Web #11
dora1998
1
150
自分のために作ったアプリが、グローバルに使われるまで / Indie App Development Lunch LT
pixyzehn
1
120
SLI/SLOの設定を進めるその前に アラート品質の改善に取り組んだ話
tanden
2
730
2025/3/18 サービスの成長で生じる幅広いパフォーマンスの問題を、 AIで手軽に解決する
shirahama_x
0
160
Denoでフロントエンド開発 2025年春版 / Frontend Development with Deno (Spring 2025)
petamoriken
1
1.3k
アーキテクトと美学 / Architecture and Aesthetics
nrslib
12
3.1k
バックエンドNode.js × フロントエンドDeno で開発して得られた知見
ayame113
5
1.3k
Node.js, Deno, Bun 最新動向とその所感について
yosuke_furukawa
PRO
6
3k
Featured
See All Featured
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
The Language of Interfaces
destraynor
157
24k
GraphQLとの向き合い方2022年版
quramy
45
14k
Agile that works and the tools we love
rasmusluckow
328
21k
Optimising Largest Contentful Paint
csswizardry
35
3.2k
Code Reviewing Like a Champion
maltzj
522
39k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
7
620
Building a Modern Day E-commerce SEO Strategy
aleyda
39
7.2k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.3k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.7k
Thoughts on Productivity
jonyablonski
69
4.5k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
51
2.4k
Transcript
Principal type-schemes for functional programs Luis Damas and Robin Milner
(POPL `82)
Agenda • Slides • Code
ML • Meta Language for LCF • Type inference •
Influence on Haskell, Rust, F#, OCaml, ... • “Sweet spot” in type system design
ML letrec f xs = if null xs then nil
else snoc (f (tl xs)) (hd xs) What type does this function have? null : ∀ ( list → bool) snoc : ∀ ( list → → list) hd, tl : ∀ ( list → ) nil : ∀ ( list)
ML What about: let s x y z = x
z (y z) ?
Type Inference f : ∀ ( list → list) •
Given f, how can we infer this type? • What does it even mean for a value to have a type? • How can we be sure we have the most general type?
Lambda Calculus Expressions e: • Identifiers: , , … •
Applications: e e’ • Abstractions: . e • Let bindings: let = e in e’
Lambda Calculus For example: . . . . let =
. . in
Types Monotypes : • Variables: • Primitives: • Functions: →
Type Schemes Type schemes : • Monomorphic: • Polymorphic: ∀
. Type schemes are types with identifiers bound by ∀ at the front.
Substitutions Mappings from variables to types • Can instantiate type
schemes using substitutions • Gives a simple subtyping relation on type schemes
Semantics Construct a semantic domain (CPO) V containing • Primitives
• Functions • An error element and a semantic function : e → (Id → V) → V
Semantics Identify types with subsets of V Define the judgment
A ╞ e : when (∀ ( : ’) ∈ A. ∈ ’) ⇒ e ∈
Declarative System Variable rule:
Declarative System Application rule:
Declarative System Abstraction rule:
Declarative System Let rule:
Declarative System Instantiation rule:
Declarative System Generalization rule:
Soundness If A e : then A ╞ e :
“Static behavior determines dynamic behavior”
Example Prove: . : ∀ . ( → → )
→ →
Algorithm W • The inference rules do not translate easily
into an algorithm (why not?) • Introduce w : Exp → Env → (Env, )
Algorithm W • W attempts to build a substitution, bottom-up
• W can fail with an error if there is no valid typing • Intuition: ◦ Collect constraints ◦ Then solve constraints • Reality: W is the fusion of these two steps • See the code!
Unification • Unification gives local information about types • We
assemble a global solution from local information
Unification Example: ( → ) ~ (( → ) →
) ~ ( → ) ~ ~ ( → )
Occurs Check Prevents inference of infinite types w( . ,
nil) = error! Can’t unify ~ if occurs in the body of . E.g. ~ → ~ ((… → ) → ) →
Soundness If w(A, e) = (S, ) then A e
: “Algorithm W constructs typing judgments”
Completeness If A e : then w(A, e) constructs a
typing judgment for e which generalises the above. “Algorithm W constructs principal types”
Further Reading More type systems • System F, F⍵ •
Rank-N types • Type Classes • Dependent Types • Refinement Types Other approaches • Constraints • Bidirectional typechecking • SMT See TAPL & ATAPL!
Acknowledgments DHM axioms reproduced from Wikipedia under the CC-3.0 Attribution/ShareAlike
license