Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Principal type-schemes for functional programs
Search
Phil Freeman
June 28, 2017
Programming
0
330
Principal type-schemes for functional programs
Phil Freeman
June 28, 2017
Tweet
Share
More Decks by Phil Freeman
See All by Phil Freeman
The Future Is Comonadic!
paf31
14
4.6k
Incremental Programming in PureScript
paf31
3
980
An Overview of the PureScript Type System
paf31
5
1.9k
Fun with Profunctors
paf31
3
1.2k
Intro to psc-package
paf31
0
150
Stack Safety for Free
paf31
0
300
Other Decks in Programming
See All in Programming
システム成長を止めない!本番無停止テーブル移行の全貌
sakawe_ee
1
200
PipeCDのプラグイン化で目指すところ
warashi
1
280
PHP 8.4の新機能「プロパティフック」から学ぶオブジェクト指向設計とリスコフの置換原則
kentaroutakeda
2
910
プロダクト志向ってなんなんだろうね
righttouch
PRO
0
190
ruby.wasmで多人数リアルタイム通信ゲームを作ろう
lnit
3
490
Code as Context 〜 1にコードで 2にリンタ 34がなくて 5にルール? 〜
yodakeisuke
0
130
AIプログラマーDevinは PHPerの夢を見るか?
shinyasaita
1
220
初学者でも今すぐできる、Claude Codeの生産性を10倍上げるTips
s4yuba
16
11k
すべてのコンテキストを、 ユーザー価値に変える
applism118
3
1.3k
AI駆動のマルチエージェントによる業務フロー自動化の設計と実践
h_okkah
0
150
MDN Web Docs に日本語翻訳でコントリビュートしたくなる
ohmori_yusuke
1
120
Python型ヒント完全ガイド 初心者でも分かる、現代的で実践的な使い方
mickey_kubo
1
120
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
950
What's in a price? How to price your products and services
michaelherold
246
12k
Statistics for Hackers
jakevdp
799
220k
Rebuilding a faster, lazier Slack
samanthasiow
82
9.1k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
54k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Building Adaptive Systems
keathley
43
2.7k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Six Lessons from altMBA
skipperchong
28
3.9k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
Optimizing for Happiness
mojombo
379
70k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Transcript
Principal type-schemes for functional programs Luis Damas and Robin Milner
(POPL `82)
Agenda • Slides • Code
ML • Meta Language for LCF • Type inference •
Influence on Haskell, Rust, F#, OCaml, ... • “Sweet spot” in type system design
ML letrec f xs = if null xs then nil
else snoc (f (tl xs)) (hd xs) What type does this function have? null : ∀ ( list → bool) snoc : ∀ ( list → → list) hd, tl : ∀ ( list → ) nil : ∀ ( list)
ML What about: let s x y z = x
z (y z) ?
Type Inference f : ∀ ( list → list) •
Given f, how can we infer this type? • What does it even mean for a value to have a type? • How can we be sure we have the most general type?
Lambda Calculus Expressions e: • Identifiers: , , … •
Applications: e e’ • Abstractions: . e • Let bindings: let = e in e’
Lambda Calculus For example: . . . . let =
. . in
Types Monotypes : • Variables: • Primitives: • Functions: →
Type Schemes Type schemes : • Monomorphic: • Polymorphic: ∀
. Type schemes are types with identifiers bound by ∀ at the front.
Substitutions Mappings from variables to types • Can instantiate type
schemes using substitutions • Gives a simple subtyping relation on type schemes
Semantics Construct a semantic domain (CPO) V containing • Primitives
• Functions • An error element and a semantic function : e → (Id → V) → V
Semantics Identify types with subsets of V Define the judgment
A ╞ e : when (∀ ( : ’) ∈ A. ∈ ’) ⇒ e ∈
Declarative System Variable rule:
Declarative System Application rule:
Declarative System Abstraction rule:
Declarative System Let rule:
Declarative System Instantiation rule:
Declarative System Generalization rule:
Soundness If A e : then A ╞ e :
“Static behavior determines dynamic behavior”
Example Prove: . : ∀ . ( → → )
→ →
Algorithm W • The inference rules do not translate easily
into an algorithm (why not?) • Introduce w : Exp → Env → (Env, )
Algorithm W • W attempts to build a substitution, bottom-up
• W can fail with an error if there is no valid typing • Intuition: ◦ Collect constraints ◦ Then solve constraints • Reality: W is the fusion of these two steps • See the code!
Unification • Unification gives local information about types • We
assemble a global solution from local information
Unification Example: ( → ) ~ (( → ) →
) ~ ( → ) ~ ~ ( → )
Occurs Check Prevents inference of infinite types w( . ,
nil) = error! Can’t unify ~ if occurs in the body of . E.g. ~ → ~ ((… → ) → ) →
Soundness If w(A, e) = (S, ) then A e
: “Algorithm W constructs typing judgments”
Completeness If A e : then w(A, e) constructs a
typing judgment for e which generalises the above. “Algorithm W constructs principal types”
Further Reading More type systems • System F, F⍵ •
Rank-N types • Type Classes • Dependent Types • Refinement Types Other approaches • Constraints • Bidirectional typechecking • SMT See TAPL & ATAPL!
Acknowledgments DHM axioms reproduced from Wikipedia under the CC-3.0 Attribution/ShareAlike
license