Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
自己関手の圏における モノイド対象 in Scala
Search
Kazuhiro Ichikawa
March 19, 2022
Programming
0
540
自己関手の圏における モノイド対象 in Scala
Kazuhiro Ichikawa
March 19, 2022
Tweet
Share
More Decks by Kazuhiro Ichikawa
See All by Kazuhiro Ichikawa
Tuples and Mirrors in Scala3 and Higher-Kinded Data
phenan
0
1.6k
ValiantParsing
phenan
1
100
Intro to typeclass in Scala
phenan
10
2.4k
Scalalr
phenan
1
2.3k
Other Decks in Programming
See All in Programming
AIエージェントによるテストフレームワーク Arbigent
takahirom
0
280
TypeScript LSP の今までとこれから
quramy
0
110
💎 My RubyKaigi Effect in 2025: Top Ruby Companies 🌐
yasulab
PRO
1
130
TVer iOSチームの共通認識の作り方 - Findy Job LT iOSアプリ開発の裏側 開発組織が向き合う課題とこれから
techtver
PRO
0
710
Perlで痩せる
yuukis
1
660
DevDay2025-OracleDatabase-kernel-addressing-history
oracle4engineer
PRO
7
1.6k
List Unfolding - 'unfold' as the Computational Dual of 'fold', and how 'unfold' relates to 'iterate'"
philipschwarz
PRO
0
140
人には人それぞれのサービス層がある
shimabox
3
470
ワイがおすすめする新潟の食 / 20250530phpconf-niigata-eve
kasacchiful
0
260
イベントソーシングとAIの親和性ー物語とLLMに理解できるデータ
tomohisa
1
160
try-catchを使わないエラーハンドリング!? PHPでResult型の考え方を取り入れてみよう
kajitack
3
340
ソフトウェア品質特性、意識してますか?AIの真の力を引き出す活用事例 / ai-and-software-quality
minodriven
19
6.7k
Featured
See All Featured
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.2k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
RailsConf 2023
tenderlove
30
1.1k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
6
660
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
25
2.8k
Bash Introduction
62gerente
614
210k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
How to Ace a Technical Interview
jacobian
276
23k
Designing Experiences People Love
moore
142
24k
Rails Girls Zürich Keynote
gr2m
94
13k
The World Runs on Bad Software
bkeepers
PRO
68
11k
Building Adaptive Systems
keathley
41
2.6k
Transcript
⾃⼰関⼿の圏における モノイド対象 in Scala @phenan
おことわり ´ 圏論的に厳密な話はしません ´ 雰囲気だけ分かった気持ちになるところが⽬標
モナドは単なる⾃⼰関⼿の圏における モノイド対象だよ。何か問題でも︖ Philip Lee Wadler
有名な煽り⽂句 ´ モナドを勉強しようとした⼈の意思を粉砕する ´ 雰囲気だけでも理解しておきたい︕
分解: ⾃⼰関⼿の圏におけるモノイド対象 ´ 圏 ´ 関⼿ ´ ⾃⼰関⼿ ´ ⾃⼰関⼿の圏
´ モノイド対象
圏 (category) ´ 数学的対象とそれらの間の関係(射)の集まり ´ 射は合成可能 ´ 抽象的すぎていまいちピンとこない
型を対象とし、関数の型の関係を考える ´ 右図だと Byte, Int, String が対象 ´ Byte =>
Int, Int => String, Byte => String が射 ´ 射の合成可能性 = 関数の合成可能性 Int String Byte
全部 Option 型にしてみる ´ これも圏 ´ 対象: Option[Byte], Option[Int], Option[String]
´ 射: Option[Byte] => Option[Int], (略) Option[Int] Option[String] Option[Byte]
⾼階型 F[_] の表現する圏 ´ 対象: 任意の型 T に対する F[T] ´
射: 任意の型 T1, T2 に対して F[T1] => F[T2] ´ だいたいこいつを考えておけばOK
Hask圏 ´ 対象: 任意の型 ´ 射: 任意の型 T1, T2 に対して
T1 => T2 ´ ⾼階型 F[_] の表現する圏の F が Id のバージョンとも考えられる
関⼿ ´ 圏から圏への対応付け ´ 射の合成を保存する
具体例 ´ Option をつけたものに対応させる Int String Byte Option[Int] Option[String] Option[Byte]
我々はこれを知っている ´ Int => String が Option[Int] => Option[String] に対応する
´ Option.map: (A => B) => Option[A] => Option[B] Int String Byte Option[Int] Option[String] Option[Byte]
Cats, Scalaz の Functor ´ 射 A => B を
射 F[A] => F[B] に対応させる ´ Hask圏から⾼階型F[_]の表現する圏への関⼿ trait Functor[F[_]] { def map[A, B](f: A => B): F[A] => F[B] }
⾃⼰関⼿ ´ 関⼿のうち、圏をその圏⾃⾝の⼀部分に対応させるもの ´ フラクタル的なイメージ︖
Cats, Scalaz の Functor は⾃⼰関⼿ ´ 射 F[A] => F[B]
は⾃明にHask圏の射でもある trait Functor[F[_]] { def map[A, B](f: A => B): F[A] => F[B] }
関⼿の圏 ´ 関⼿は圏を別の圏に移す ´ 関⼿同⼠も合成可能 ´ 関⼿を射とみなして圏を作れる B C A
関⼿ F: A => B 関⼿G∘F: A => C 関⼿G: B => C
具体例 ´ Option と Future の合成 ´ Option.map: (A =>
B) => Option[A] => Option[B] ´ Future.map: (A => B) => Future[A] => Future[B] Id Option.map Future.map Future[Option[_]] Option[_]
⾃⼰関⼿の圏 ´ ⾃⼰関⼿同⼠は合成しても⾃⼰関⼿ ´ ⾃⼰関⼿同⼠を合成する演算 ⊗ を考えると、結果も⾃⼰関⼿になる ´ モノイドっぽい︕==> モノイド圏と呼ばれる
´ モノイドの要件として単位元が必要
具体例 ´ G[_] ⊗ F[_] -> G[F[_]] になる ´ 単位元:
Id Id Option.map Future.map Future[Option[_]] def compose[A, B](f: A => B): G[F[A]] => G[F[B]] = { Functor[G].map(Functor[F].map(f)) } Option[_]
モノイド対象 ´ モノイド圏の対象Mのうち以下の条件を満たすもの ´ M ⊗ M が M に戻る
´ 単位元 を I として I => M の射が存在する ´ イメージとしては、それ⾃⾝がモノイドであるような対象 ´ ⊗ がそれ⾃⾝の⼆項演算になる ´ それ⾃⾝の単位元をモノイド圏全体の単位元から導ける
OptionはFunctorの圏のモノイド対象 ´ Option[_] ⊗ Option[_] = Option[Option[_]] ´ flatten すれば
Option[_] に戻せる︕ ´ 単位元 Id から Option への射: T => Option[T] ´ これは Some(_) のこと
Functorの圏のモノイド対象 ´ flatten: F[F[A]] => F[A] と unit: A =>
F[A] があれば良い ´ つまりこうなる trait Monad[F[_]] extends Functor[F[_]] { def flatten[A](f: F[F[A]]): F[A] def unit[A](f: A): F[A] }