Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
自己関手の圏における モノイド対象 in Scala
Search
Kazuhiro Ichikawa
March 19, 2022
Programming
0
530
自己関手の圏における モノイド対象 in Scala
Kazuhiro Ichikawa
March 19, 2022
Tweet
Share
More Decks by Kazuhiro Ichikawa
See All by Kazuhiro Ichikawa
Tuples and Mirrors in Scala3 and Higher-Kinded Data
phenan
0
1.6k
ValiantParsing
phenan
1
98
Intro to typeclass in Scala
phenan
10
2.4k
Scalalr
phenan
1
2.3k
Other Decks in Programming
See All in Programming
The New Developer Workflow: How AI Transforms Ideas into Code
danielsogl
0
140
Boast Code Party / RubyKaigi 2025 After Event
lemonade_37
0
110
Duke on CRaC with Jakarta EE
ivargrimstad
1
140
MySQL初心者が311個のカラムにNot NULL制約を追加していってALTER TABLEについて学んだ話
hatsu38
2
140
VibeCoding時代のエンジニアリング
daisuketakeda
0
220
私のRubyKaigi 2025 Kaigi Effect / My RubyKaigi 2025 Kaigi Effect
chobishiba
1
140
In geheimer Mission: AI Agents entwickeln
joergneumann
0
120
Ruby で作る RISC-V CPU エミュレーター / RISC-V CPU emulator made with Ruby
hayaokimura
5
1.2k
AWS Summit Hong Kong 2025: Reinventing Programming - How AI Transforms Our Enterprise Coding Approach
dwchiang
0
150
“技術カンファレンスで何か変わる?” ──RubyKaigi後の自分とチームを振り返る
ssagara00
0
120
知識0からカンファレンスやってみたらこうなった!
syossan27
5
280
エンジニアが挑む、限界までの越境
nealle
1
330
Featured
See All Featured
Statistics for Hackers
jakevdp
799
220k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.7k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
12k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
The Cost Of JavaScript in 2023
addyosmani
49
7.8k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Become a Pro
speakerdeck
PRO
28
5.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
137
33k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.2k
Transcript
⾃⼰関⼿の圏における モノイド対象 in Scala @phenan
おことわり ´ 圏論的に厳密な話はしません ´ 雰囲気だけ分かった気持ちになるところが⽬標
モナドは単なる⾃⼰関⼿の圏における モノイド対象だよ。何か問題でも︖ Philip Lee Wadler
有名な煽り⽂句 ´ モナドを勉強しようとした⼈の意思を粉砕する ´ 雰囲気だけでも理解しておきたい︕
分解: ⾃⼰関⼿の圏におけるモノイド対象 ´ 圏 ´ 関⼿ ´ ⾃⼰関⼿ ´ ⾃⼰関⼿の圏
´ モノイド対象
圏 (category) ´ 数学的対象とそれらの間の関係(射)の集まり ´ 射は合成可能 ´ 抽象的すぎていまいちピンとこない
型を対象とし、関数の型の関係を考える ´ 右図だと Byte, Int, String が対象 ´ Byte =>
Int, Int => String, Byte => String が射 ´ 射の合成可能性 = 関数の合成可能性 Int String Byte
全部 Option 型にしてみる ´ これも圏 ´ 対象: Option[Byte], Option[Int], Option[String]
´ 射: Option[Byte] => Option[Int], (略) Option[Int] Option[String] Option[Byte]
⾼階型 F[_] の表現する圏 ´ 対象: 任意の型 T に対する F[T] ´
射: 任意の型 T1, T2 に対して F[T1] => F[T2] ´ だいたいこいつを考えておけばOK
Hask圏 ´ 対象: 任意の型 ´ 射: 任意の型 T1, T2 に対して
T1 => T2 ´ ⾼階型 F[_] の表現する圏の F が Id のバージョンとも考えられる
関⼿ ´ 圏から圏への対応付け ´ 射の合成を保存する
具体例 ´ Option をつけたものに対応させる Int String Byte Option[Int] Option[String] Option[Byte]
我々はこれを知っている ´ Int => String が Option[Int] => Option[String] に対応する
´ Option.map: (A => B) => Option[A] => Option[B] Int String Byte Option[Int] Option[String] Option[Byte]
Cats, Scalaz の Functor ´ 射 A => B を
射 F[A] => F[B] に対応させる ´ Hask圏から⾼階型F[_]の表現する圏への関⼿ trait Functor[F[_]] { def map[A, B](f: A => B): F[A] => F[B] }
⾃⼰関⼿ ´ 関⼿のうち、圏をその圏⾃⾝の⼀部分に対応させるもの ´ フラクタル的なイメージ︖
Cats, Scalaz の Functor は⾃⼰関⼿ ´ 射 F[A] => F[B]
は⾃明にHask圏の射でもある trait Functor[F[_]] { def map[A, B](f: A => B): F[A] => F[B] }
関⼿の圏 ´ 関⼿は圏を別の圏に移す ´ 関⼿同⼠も合成可能 ´ 関⼿を射とみなして圏を作れる B C A
関⼿ F: A => B 関⼿G∘F: A => C 関⼿G: B => C
具体例 ´ Option と Future の合成 ´ Option.map: (A =>
B) => Option[A] => Option[B] ´ Future.map: (A => B) => Future[A] => Future[B] Id Option.map Future.map Future[Option[_]] Option[_]
⾃⼰関⼿の圏 ´ ⾃⼰関⼿同⼠は合成しても⾃⼰関⼿ ´ ⾃⼰関⼿同⼠を合成する演算 ⊗ を考えると、結果も⾃⼰関⼿になる ´ モノイドっぽい︕==> モノイド圏と呼ばれる
´ モノイドの要件として単位元が必要
具体例 ´ G[_] ⊗ F[_] -> G[F[_]] になる ´ 単位元:
Id Id Option.map Future.map Future[Option[_]] def compose[A, B](f: A => B): G[F[A]] => G[F[B]] = { Functor[G].map(Functor[F].map(f)) } Option[_]
モノイド対象 ´ モノイド圏の対象Mのうち以下の条件を満たすもの ´ M ⊗ M が M に戻る
´ 単位元 を I として I => M の射が存在する ´ イメージとしては、それ⾃⾝がモノイドであるような対象 ´ ⊗ がそれ⾃⾝の⼆項演算になる ´ それ⾃⾝の単位元をモノイド圏全体の単位元から導ける
OptionはFunctorの圏のモノイド対象 ´ Option[_] ⊗ Option[_] = Option[Option[_]] ´ flatten すれば
Option[_] に戻せる︕ ´ 単位元 Id から Option への射: T => Option[T] ´ これは Some(_) のこと
Functorの圏のモノイド対象 ´ flatten: F[F[A]] => F[A] と unit: A =>
F[A] があれば良い ´ つまりこうなる trait Monad[F[_]] extends Functor[F[_]] { def flatten[A](f: F[F[A]]): F[A] def unit[A](f: A): F[A] }