Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scale like a pro
Search
Python Porto
December 14, 2017
Programming
1
280
Scale like a pro
Distributed task processing with Python and Celery
Python Porto
December 14, 2017
Tweet
Share
More Decks by Python Porto
See All by Python Porto
Detecting phishing with Recurrent Neural Networks
pyporto
0
44
Quick and Robust API with Django Rest Framework
pyporto
1
350
Django as your data management framework
pyporto
1
1.2k
Can my computer make jokes
pyporto
0
110
Building a serverless cloud service
pyporto
0
58
Python Porto #10. Past, present and future
pyporto
0
86
Entertaining testing with pytest
pyporto
0
190
Joyful Python Web App development with Appier
pyporto
0
160
Other Decks in Programming
See All in Programming
Putting The Genie in the Bottle - A Crash Course on running LLMs on Android
iurysza
0
110
MCPでVibe Working。そして、結局はContext Eng(略)/ Working with Vibe on MCP And Context Eng
rkaga
5
1.9k
TDD 実践ミニトーク
contour_gara
1
290
Vue・React マルチプロダクト開発を支える Vite
andpad
0
110
プロポーザル駆動学習 / Proposal-Driven Learning
mackey0225
2
810
Protocol Buffersの型を超えて拡張性を得る / Beyond Protocol Buffers Types Achieving Extensibility
linyows
0
110
モバイルアプリからWebへの横展開を加速した話_Claude_Code_実践術.pdf
kazuyasakamoto
0
310
Oracle Database Technology Night 92 Database Connection control FAN-AC
oracle4engineer
PRO
1
400
テストカバレッジ100%を10年続けて得られた学びと品質
mottyzzz
2
480
Flutter with Dart MCP: All You Need - 박제창 2025 I/O Extended Busan
itsmedreamwalker
0
130
開発チーム・開発組織の設計改善スキルの向上
masuda220
PRO
18
9.8k
個人軟體時代
ethanhuang13
0
310
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
96
6.2k
Six Lessons from altMBA
skipperchong
28
4k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Practical Orchestrator
shlominoach
190
11k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Thoughts on Productivity
jonyablonski
70
4.8k
Unsuck your backbone
ammeep
671
58k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
Transcript
Scale like a pro Distributed computing with message queues and
Python Roman Imankulov | Python Porto | December 2017
Source: https://blog.kissmetrics.com/wp-content/uploads/2011/04/loading-time.pdf
browser ./webserver.py request POST /obj/<id> obj.update()
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes send
email “object updated” …
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes update
business analytics send email “object updated” …
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes update
business analytics send email “object updated” … response
None
browser ./webserver.py request POST /obj/<id> response obj.update() ./worker.py ./worker.py ./worker.py
update search indexes send email “object updated” update business analytics
Message queues
None
None
queue
frontends queue
frontends queue workers
frontends queue job 1 workers
frontends queue job 1 workers job 2
frontends queue job 1 workers job 2 job 3
frontends queue put() job 1 workers job 2 job 3
frontends queue put() job 1 workers job 2 job 3
frontends queue job 1 workers job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers job 2 job 3
frontends queue job 1 get() workers job 2 job 3
frontends queue get() workers job 2 job 3 job 1
frontends queue workers job 2 job 3 job 1
frontends queue workers get() job 2 job 3 job 1
frontends queue workers get() job 3 job 1 job 2
frontends queue workers job 3 job 1 job 2
frontends queue workers job 3 job 2
frontends queue workers job 3 job 2 get()
frontends queue workers job 2 job 3 get()
frontends queue workers job 2 job 3
frontends queue workers
Queue in python
Multiprocessing
None
None
None
None
None
None
None
Celery The queue out of the box
None
None
None
None
None
Celery Workflows chains, groups and chords
Task signatures
Task signatures
Task signatures
Chains a(…) b(…) c(…)
Chains a(…) b(…) c(…)
Chains a(…) b(…) c(…)
a(…) b(…) c(…) Groups
a(…) b(…) c(…) Groups
a(…) b(…) c(…) Groups
Chords a(…) b(…) c(…) d(…)
Chords a(…) b(…) c(…) d(…)
Chords a(…) b(…) c(…) d(…)
Celery Extras out of the box
None
• Different backends
• Different backends • Different serializers
• Different backends • Different serializers • Callbacks / errbacks
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute)
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling • Multiple queues
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling • Multiple queues • Introspection and statistics
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling • Multiple queues • Introspection and statistics • Periodic tasks and crontabs
None
facebook.com/pyporto