Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scale like a pro
Search
Python Porto
December 14, 2017
Programming
1
250
Scale like a pro
Distributed task processing with Python and Celery
Python Porto
December 14, 2017
Tweet
Share
More Decks by Python Porto
See All by Python Porto
Detecting phishing with Recurrent Neural Networks
pyporto
0
36
Quick and Robust API with Django Rest Framework
pyporto
1
340
Django as your data management framework
pyporto
1
1.1k
Can my computer make jokes
pyporto
0
110
Building a serverless cloud service
pyporto
0
51
Python Porto #10. Past, present and future
pyporto
0
80
Entertaining testing with pytest
pyporto
0
180
Joyful Python Web App development with Appier
pyporto
0
150
Other Decks in Programming
See All in Programming
Amazon Bedrockマルチエージェントコラボレーションを諦めてLangGraphに入門してみた
akihisaikeda
1
170
From the Wild into the Clouds - Laravel Meetup Talk
neverything
0
190
DRFを少しずつ オニオンアーキテクチャに寄せていく DjangoCongress JP 2025
nealle
2
300
ソフトウェアエンジニアの成長
masuda220
PRO
12
2.2k
GoとPHPのインターフェイスの違い
shimabox
2
220
Duke on CRaC with Jakarta EE
ivargrimstad
0
230
CIBMTR振り返り+敗北から学ぶコンペの取り組み方反省
takanao
1
150
クリーンアーキテクチャから見る依存の向きの大切さ
shimabox
5
1.2k
PHPのバージョンアップ時にも役立ったAST
matsuo_atsushi
0
230
バッチを作らなきゃとなったときに考えること
irof
2
560
Devin入門 〜月500ドルから始まるAIチームメイトとの開発生活〜 / Introduction Devin 〜Development With AI Teammates〜
rkaga
2
180
読まないコードリーディング術
hisaju
1
130
Featured
See All Featured
Unsuck your backbone
ammeep
669
57k
Visualization
eitanlees
146
15k
Large-scale JavaScript Application Architecture
addyosmani
511
110k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
11
1.3k
KATA
mclloyd
29
14k
Six Lessons from altMBA
skipperchong
27
3.6k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
30
4.6k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
13
1k
GraphQLの誤解/rethinking-graphql
sonatard
69
10k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.3k
Building Applications with DynamoDB
mza
93
6.2k
Testing 201, or: Great Expectations
jmmastey
42
7.2k
Transcript
Scale like a pro Distributed computing with message queues and
Python Roman Imankulov | Python Porto | December 2017
Source: https://blog.kissmetrics.com/wp-content/uploads/2011/04/loading-time.pdf
browser ./webserver.py request POST /obj/<id> obj.update()
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes send
email “object updated” …
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes update
business analytics send email “object updated” …
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes update
business analytics send email “object updated” … response
None
browser ./webserver.py request POST /obj/<id> response obj.update() ./worker.py ./worker.py ./worker.py
update search indexes send email “object updated” update business analytics
Message queues
None
None
queue
frontends queue
frontends queue workers
frontends queue job 1 workers
frontends queue job 1 workers job 2
frontends queue job 1 workers job 2 job 3
frontends queue put() job 1 workers job 2 job 3
frontends queue put() job 1 workers job 2 job 3
frontends queue job 1 workers job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers job 2 job 3
frontends queue job 1 get() workers job 2 job 3
frontends queue get() workers job 2 job 3 job 1
frontends queue workers job 2 job 3 job 1
frontends queue workers get() job 2 job 3 job 1
frontends queue workers get() job 3 job 1 job 2
frontends queue workers job 3 job 1 job 2
frontends queue workers job 3 job 2
frontends queue workers job 3 job 2 get()
frontends queue workers job 2 job 3 get()
frontends queue workers job 2 job 3
frontends queue workers
Queue in python
Multiprocessing
None
None
None
None
None
None
None
Celery The queue out of the box
None
None
None
None
None
Celery Workflows chains, groups and chords
Task signatures
Task signatures
Task signatures
Chains a(…) b(…) c(…)
Chains a(…) b(…) c(…)
Chains a(…) b(…) c(…)
a(…) b(…) c(…) Groups
a(…) b(…) c(…) Groups
a(…) b(…) c(…) Groups
Chords a(…) b(…) c(…) d(…)
Chords a(…) b(…) c(…) d(…)
Chords a(…) b(…) c(…) d(…)
Celery Extras out of the box
None
• Different backends
• Different backends • Different serializers
• Different backends • Different serializers • Callbacks / errbacks
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute)
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling • Multiple queues
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling • Multiple queues • Introspection and statistics
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling • Multiple queues • Introspection and statistics • Periodic tasks and crontabs
None
facebook.com/pyporto