lσ known body forces and torques FP TP known slip coefficients <latexit sha1_base64="KnWT5FtbfEMMkcOCh8BAgABqYNk=">AAACvnicfVFda9swFJW9buuybs22x72IhpWUQbBDRwujEDbY9phBkxbiLFzLcqpGsowklwWhPznYw/7N5MQPSVp6Qejo3Huu7kdacqZNFP0Lwid7T58933/Rennw6vVh+83bsZaVInREJJfqOgVNOSvoyDDD6XWpKIiU06t08bX2X91RpZksLs2ypFMB84LljIDx1Kz9N0klz/RS+Mveue7mU7mT44tNIhFgbghw+925X7Yb6xOXkEyaFZ/m9ptnh+4jfkTThx3N5VqT6ErMLE80mwu46GvPOrydaMjqBE2IzyI3soy3XK1ZuxP1opXh+yBuQAc1Npy1/ySZJJWghSEctJ7EUWmmFpRhhFPXSipNSyALmNOJhwUIqqd2NX6HP3gmw7lU/hQGr9hNhQWh6yZ8ZF2u3vXV5EO+SWXy86llRVkZWpD1R3nFsZG43iXOmKLE8KUHQBTztWJyAwqI8RuvhxDvtnwfjPu9+FMv+nnaGXxpxrGP3qMj1EUxOkMD9AMN0QiR4HMAwW2wCAdhHopQrkPDoNG8Q1sW/v4P9jDfZg==</latexit> v(r) = G(1s) · FP + G(2a) · TP + X l =2s ⇧(l ) V(l ) <latexit sha1_base64="KPkzMO0bzgStJqDXXaeq6O1g2KA=">AAACmnicbVFbb9MwFHbCZaPcCnvgAR4sKqRWQJVMIPZSaQyJi3gZaO2G6hI5jtNac+zIPplUWflR/BXe+Dc4aZC6jSNZ/vSd79zTUgoLUfQnCG/cvHV7Z/dO7+69+w8e9h89nlldGcanTEttzlJquRSKT0GA5Gel4bRIJT9Nzz80/tMLbqzQ6gTWJV8UdKlELhgFTyX9XyTVMrPrwn/uok6cqH86UlBYMSrd+7omqVgOt0XfW9HLbYqYlW7ZRjyaEFsViZOTuEklVA7rGrcp09zNuhJDOaoJyzT8c/xoydfxqL5UjawobPK3gaNXvaQ/iMZRa/g6iDswQJ0dJ/3fJNOsKrgCJqm18zgqYeGoAcEkr3uksryk7Jwu+dxDRQtuF65dbY1feCbDuTb+KcAtux3haGGbVr2yGcRe9TXk/3zzCvKDhROqrIArtimUVxKDxs2dcCYMZyDXHlBmhO8VsxU1lIG/ZrOE+OrI18Fsfxy/HUff3gwOj7p17KKn6Dkaohi9Q4foMzpGU8SCJ8Ek+Bh8Cp+FR+GX8OtGGgZdzB66ZOHJX5pz0PU=</latexit> vA i Ri + ⇢i = 1 X l=1 V(l) i · Y(l 1)(ˆ ⇢i ), boundary velocity v(ri) = Vi + ⌦i ⇥ ⇢i + vA i (⇢i ) Mazur and Van Saarloos, Physica A 1982; Hess 2015; RS et al. JSTAT 2015, PRL 2016, JOSS 2020 Expansion of boundary fields in tensorial spherical harmonics Y(l) - dimensionless, symmetric, irreducible Cartesian tensors of rank l that form a complete, orthogonal basis on the sphere Y(l)(ˆ ⇢) = ( 1)l⇢l+1r(l)⇢ 1 <latexit sha1_base64="f9kVoPJo+AjtI2MEG3lUOl9ykEY=">AAACc3icbZHLSiQxFIZT5Vy059Y64MaFwZ4BG8amygu6aRDduHRgWh26eopTqdNWMHUxOSU0Rb3APJ4738KNe9MXxFYPBP585/9JchIVShryvDvHXXj3/sPHxaXGp89fvn5rLq+cmbzUAnsiV7m+iMCgkhn2SJLCi0IjpJHC8+jqeNw/v0FtZJ79oVGBgxQuMzmUAsiisPn/779q02vXXf9XcF1CzMd7v12HAagigW6QAFWBTvI6rKaofmbcbj/hIEKCurvzRmAOTWxbQYyKYD4bNltex5sUfy38mWixWZ2GzdsgzkWZYkZCgTF93ytoUIEmKRTWjaA0WIC4gkvsW5lBimZQTWZW85+WxHyYa7sy4hP6PFFBaswojawzBUrMy94YvtXrlzQ8GFQyK0rCTEwPGpaKU87HH8BjqVGQGlkBQkt7Vy4S0CDIflPDDsF/+eTX4my74+91vN+7rcOj2TgW2RrbYJvMZ/vskJ2wU9Zjgt07q866w50Hd83dcH9Mra4zy3xnc+VuPQLIbL+H</latexit> Y (0) = 1, Y (1) ↵ = ˆ ⇢↵, Y (2) ↵ = 3ˆ ⇢↵ ˆ ⇢ ↵ <latexit sha1_base64="Jl+Izs7/1Vhgnr7jO3oOGsUpQXo=">AAAC1nicfVJba9swFJbdXbrslm6PexELgxbaYI+W9WVQuocN9tLRpQ1ExhzLciwqWUaSA8G4Dy1jr/tte9uP2H+YnHiwJmEHhD6d7zvSuSgpBTc2CH55/ta9+w8ebj/qPX7y9Nnz/s6LC6MqTdmIKqH0OAHDBC/YyHIr2LjUDGQi2GVy9aHlL2dMG66Kr3ZeskjCtOAZp2CdK+7/nsU1AVHm0OySRInUzKXbat3svT8gvLCYnPIpnuCPf3UkYXZNvF/fPce82ctcxFK7gcQH+HPHd9dOQcqN2v2VvEgOtiY6V427YBk1++9TbQVReh7zXtwfBMNgYXgdhB0YoM7O4v5PkipaSVZYKsCYSRiUNqpBW04Fa3qkMqwEegVTNnGwAMlMVC/G0uA3zpPiTGm3XCMX3n8japCmzdQpJdjcrHKtcxM3qWx2HNW8KCvLCrp8KKsEtgq3M8Yp14xaMXcAqOYuV0xz0ECt+wltE8LVktfBxdtheDQMvhwOTk67dmyjV+g12kUheodO0Cd0hkaIeufe3Lvxbv2xf+1/878vpb7XxbxEd8z/8QfErunV</latexit> v↵(r) = Z h G↵ (r, ri)f (ri) K ↵ (ri, r)ˆ ⇢ v (ri) i dSi irreducible coefficients <latexit sha1_base64="iQHbbcsmxQA6COVfndimfSPtIt8=">AAACD3icbVC5TgMxFPRyhnAFKGksIlBool0EgjKChjJI5JCyIfI6bxMr3kP2W0S02j+g4VdoKECIlpaOv8E5CkgYydJo5j17PF4shUbb/rYWFpeWV1Zza/n1jc2t7cLObl1HieJQ45GMVNNjGqQIoYYCJTRjBSzwJDS8wdXIb9yD0iIKb3EYQztgvVD4gjM0Uqdw5CI84PieVEE3S92AYd/zaf0uLUlXi17AjrOsUyjaZXsMOk+cKSmSKaqdwpfbjXgSQIhcMq1bjh1jO2UKBZeQ5d1EQ8z4gPWgZWjIAtDtdJwjo4dG6VI/UuaESMfq742UBVoPA89MjtLqWW8k/ue1EvQv2qkI4wQh5JOH/ERSjOioHNoVCjjKoSGMK2GyUt5ninE0FeZNCc7sl+dJ/aTsnJXtm9Ni5XJaR47skwNSIg45JxVyTaqkRjh5JM/klbxZT9aL9W59TEYXrOnOHvkD6/MHLHWdWg==</latexit> V(l )