Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Binding mode prediction via graph theory @ BioM...

Binding mode prediction via graph theory @ BioMolecular Science Gateway

A novel approach to protein-ligand binding mode prediction by rigidity analysis using graph theory

Sebastian Raschka

February 08, 2016
Tweet

More Decks by Sebastian Raschka

Other Decks in Science

Transcript

  1. BioMolecular Science Gateway Research Forum February 8, 2016 Sebastian Raschka

    A novel approach to protein-ligand binding mode prediction by rigidity analysis using graph theory
  2. A little bit about myself …! 2! SiteInterlock A truly

    novel algorithm for protein- ligand docking based on graph theory A large-scale virtual screening framework for hypothesis-driven ligand-based protein-inhibitor discovery SeaScreen
  3. A little bit about myself …! 3! SiteInterlock A truly

    novel algorithm for protein- ligand docking based on graph theory A large-scale virtual screening framework for hypothesis-driven ligand-based protein-inhibitor discovery SeaScreen
  4. Protein Ligand Docking! When & Why?! Structure of Ibuprofen bound

    to cyclooxygenase-2 ! Orlando, B. J., Lucido, M. J., & Malkowski, M. G. (2015)! (PDB code: 4ph9)! 4!
  5. Binding Mode Prediction! Ligand “Pose”! Orientation! Conformation! [ + flexible

    protein side chains ]! 7! deoxycytidylate hydroxymethylase cognate ligand 2'-deoxycytidine-5'-monophosphate ! (PDB code: 1b5e)! +
  6. Evaluate against hold-out data! Experimental structure! RMSD 1.0 Å! RMSD

    2.8 Å! 9! Carboxypeptidase A + inhibitor L-benzylsuccinate (PDB code: 1cbx)!
  7. Protein structure! Experimental structure! Representation as a! “docking problem”! Generating

    & ranking ! docking poses! Evaluating pose(s)! 10! [scoring function]! ?! ?! ?! Ligand!
  8. Internal Scoring Metrics! 11! Statistical ! potentials! Molecular ! Mechanics

    ! (force fields)! Empirical! •  Accuracy! •  Computational efficiency! •  Apo-structures!
  9. 12! Statistical ! potentials! Molecular ! Mechanics ! (force fields)!

    Empirical! SiteInterlock! •  Accuracy! •  Computational efficiency! •  Apo-structures!
  10. 13! “bad” docking pose! “near -native” docking pose! more rigid!

    more! flexible! We can detect a local rigidity increase! upon protein-ligand complex formation! Hypothesis!
  11. 15! M. D. Cummings, M. A. Farnum, and M. I.

    Nelen. Universal screening methods and applications of thermofluor. Journal of biomolecular screening, 11(7):854–863, 2006.! Thermal Shift Assay! Protein + Ligand Protein
  12. Predicting Flexibility via ProFlex! 16! Penicillin-derived ! asymmetric inhibitor! Crystal

    structure! of HIV protease! Crystal structure! (after deleting the ligand)! (PDB code: 1htg)! D. J. Jacobs, A. J. Rader, L. A. Kuhn, and M. F. Thorpe. Protein flexibility predictions using graph theory. ! Proteins: Structure, Function, and Bioinformatics, 44(2):150–165, 2001.!
  13. 19!

  14. 2D Pebble Game! 2 0 Jacobs and Thorpe. Generic rigidity

    percolation: The pebble game. Phys Rev Lett, 75(22):4051–4054, Nov 1995. minimally rigid graph with n nodes and m edges! m = 2n - 3 a c b (2,3 counting)!
  15. 2D Pebble Game! a c b 1) Draw an edge

    if 2 pebbles are present at both nodes. ! 22!
  16. 2D Pebble Game! a c b 1) Draw an edge

    if 2 pebbles are present at both nodes. ! Next, consume 1 pebble from the starting node.! 23!
  17. 2D Pebble Game! a c b 1) Draw an edge

    if 2 pebbles are present at both nodes. ! Next, consume 1 pebble from the starting node.! 2) Do a depth-first search to recover pebbles! 24!
  18. 2D Pebble Game! a c b 1) Draw an edge

    if 2 pebbles are present at both nodes. ! Next, consume 1 pebble from the starting node.! 2) Do a depth-first search to recover pebbles! 3) Revert the edge and bring the pebble back to the node! 25!
  19. 2D Pebble Game! a c b 1) Draw an edge

    if 2 pebbles are present at both nodes. ! Next, consume 1 pebble from the starting node.! 2) Do a depth-first search to recover pebbles! 3) Revert the edge and bring the pebble back to the node! 4) Go back to 1) and Insert a new edge! 26!
  20. 2D Pebble Game! a c b 2) Do a depth-first

    search to recover pebbles! 3) Revert the edge and bring the pebble back to the node! 27!
  21. 2D Pebble Game! a c b minimally rigid! 4) Go

    back to 1) and Insert a new edge! 28!
  22. 31! Crystal structure of the anti- bacterial sulfonamide drug target

    dihydropteroate synthase. 
 (PDB code: 1ajz)
  23. Take crystal pose! Generate low-energy conformations! Dock low-energy conformations! Score

    docked complexes! Compare best-scoring pose to crystal! 33!
  24. 34! Protein Flexibility Changes in Docking Poses! Carboxypeptidase A +

    inhibitor L-benzylsuccinate (PDB code: 1cbx)! “most rigid”! protein! “least rigid”! protein!
  25. Generate low-energy conformations (OMEGA21)! Sample docking poses in flexible binding

    site (SLIDE2)! Determine parameters of stable ligand-free protein structure (HETHER)! Analyze rigidity of docked Poses (PROFLEX)! Extract binding pocket and rank poses (SiteInterlock-Score)! Extract ligand from crystal structure! [1] P. C. D. Hawkins, A. G. Skillman, G. L. Warren, B. A. Ellingson, and M. T. Stahl. Conformer generation with omega: algorithm and validation using high quality structures from the protein databank and cambridge structural database. J Chem Inf Model, 50(4):572–84, Apr 2010. [2] M. I. Zavodszky, P. C. Sanschagrin, L. A. Kuhn, and R. S. Korde. Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening. Journal of computer-aided molecular design, 16(12):883–902, 2002. 37!
  26. 19 x Holo! 11 x Apo! (holo ligand \ !

    apo protein)! 1a9x ! 1amu 1b5e 1bgv 1bx4 1c96 1cbs! 1cbx! 1ccw 1chm 1com! 1coy! 1cps! 1did! 1hwr! 1rx1 7tim! 3ks9! 3odu! 10gs / 16gs! 1ahb / 1ahc 1aj2 / 1ajz! 1gmr / 1gmq ! 1kel / 1kem! 1nsc / 1nsb ! 1swd / 1swa! 3tmn / 1tli 1tmt / 1vr1 1ydb / 1ydc! 5sga / 2sga!
  27. 39!

  28. 40! [1] TroD, O., & Olson, A. J. (2010). AutoDock

    Vina: improving the speed and accuracy of docking with a new scoring funcOon, efficient opOmizaOon, and mulOthreading. Journal of computa.onal chemistry, 31(2), 455-461. [2] Fan, H., Schneidman-Duhovny, D., Irwin, J. J., Dong, G., Shoichet, B. K., & Sali, A. (2011). StaOsOcal potenOal for modeling and ranking of protein–ligand interacOons. Journal of chemical informa.on and modeling, 51(12), 3078-3092. [3] Neudert, G., & Klebe, G. (2011). DSX: a knowledge-based scoring funcOon for the assessment of protein–ligand complexes. Journal of chemical informa.on and modeling, 51(10), 2731-2745. [4] Wang, R., Lai, L., & Wang, S. (2002). Further development and validaOon of empirical scoring funcOons for structure-based binding affinity predicOon. Journal of computer-aided molecular design, 16(1), 11-26. [5] Allen, W. J., Balius, T. E., Mukherjee, S., Brozell, S. R., Moustakas, D. T., Lang, P. T., ... & Rizzo, R. C. (2015). DOCK 6: Impact of new features and current docking performance. Journal of computa.onal chemistry, 36(15), 1132-1156. [1] [2] [3] [4] [5]
  29. 41!

  30. 42!

  31. Acknowledgements! Dr. Leslie A. Kuhn (Advisor)! Professor in the Department

    of Biochemistry and Molecular Biology! The Kuhn Lab! Joseph Buffington-Bemister! Undergraduate Researcher! 45! Alex Wolf! Undergraduate Researcher!