Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Convolutional Neural Networks for Predicting an...

Convolutional Neural Networks for Predicting and Hiding Personal Traits from Face Images

In recent years, we have developed many Deep Learning-centric applications that enhance our everyday life. However, as more and more data is collected and extracted, the protection and respect for users' privacy have become a big concern. First, this talk will introduce methods for extracting soft-biometric attributes from facial images -- soft-biometric characteristics include a person's age, gender, race, and health status. Then, I will cover methods designed to conceal soft-biometric information to enhance the privacy of users. However, many useful security-related applications rely on face recognition technology for user verification and authentication. Hence, the approaches being presented focus on a dual objective: concealing personal information that can be obtained from face images while preserving the utility of these images for face matching.

Sebastian Raschka

July 02, 2019
Tweet

More Decks by Sebastian Raschka

Other Decks in Science

Transcript

  1. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    International Summer School on Deep Learning Convolutional Neural Networks for Predicting and Hiding Personal Traits from Face Images Sebastian Raschka Assistant Professor of Statistics at University of Wisconsin-Madison http://pages.stat.wisc.edu/~sraschka/
  2. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    2 A. Identification Determine identity of an unknown person 1-to-n matching ... B. Verification Verify claimed identity of a person 1-to-1 matching (CelebA dataset) (MUCT dataset) Biometric (Face) Recognition
  3. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    3 Applications of Biometric (Face) Recognition https://whyarg.com/wp-content/uploads/2017/06/videosurveillance.jpg https://www.secureidnews.com/wp-content/ uploads/2013/03/3m_autogate-300x259.jpg
  4. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    4 https://www.nytimes.com/interactive/2019/04/16/opinion/facial-recognition-new-york-city.html
  5. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    5 Identity John Doe Gender Male Age 65 Medical Healthy SOFT BIOMETRIC ATTRIBUTES Race Caucasian Identity https://media.pitchfork.com/photos/59c0335abe5bf47cb9787b75/2:1/w_790/lynch.jpg John Doe Age 65 Race Caucasian Medical Healthy SOFT BIOMETRIC ATTRIBUTES Soft-Biometrics
  6. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    6 Part I: Extracting Soft-Biometric Attributes 
 from Face Images
  7. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    7 Identity John Doe Gender Male Age 65 Medical Healthy SOFT BIOMETRIC ATTRIBUTES Race Caucasian Identity https://media.pitchfork.com/photos/59c0335abe5bf47cb9787b75/2:1/w_790/lynch.jpg John Doe Age 65 Race Caucasian Medical Healthy SOFT BIOMETRIC ATTRIBUTES
  8. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    8 7x7 conv, 64, /2 pool, /2 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 128, /2 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 256, /2 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 512, /2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 avg pool fc 1000 image 3x3 conv, 512 3x3 conv, 64 3x3 conv, 64 pool, /2 3x3 conv, 128 3x3 conv, 128 pool, /2 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 pool, /2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 pool, /2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 pool, /2 fc 4096 fc 4096 fc 1000 image output size: 112 output size: 224 output size: 56 output size: 28 output size: 14 output size: 7 output size: 1 VGG-19 34-layer plain 7x7 conv, 64, /2 pool, /2 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 128, /2 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 256, /2 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 512, /2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 avg pool fc 1000 image 34-layer residual Residual Network. Based on the above plain network, we insert shortcut connections (Fig. 3, right) which turn the network into its counterpart residual version. The identity shortcuts (Eqn.(1)) can be directly used when the input and output are of the same dimensions (solid line shortcuts in Fig. 3). When the dimensions increase (dotted line shortcuts in Fig. 3), we consider two options: (A) The shortcut still performs identity mapping, with extra zero entries padded for increasing dimensions. This option introduces no extra parameter; (B) The projection shortcut in Eqn.(2) is used to match dimensions (done by 1×1 convolutions). For both options, when the shortcuts go across feature maps of two sizes, they are performed with a stride of 2. 3.4. Implementation Our implementation for ImageNet follows the practice in [21, 40]. The image is resized with its shorter side ran- domly sampled in [256, 480] for scale augmentation [40]. A 224×224 crop is randomly sampled from an image or its horizontal flip, with the per-pixel mean subtracted [21]. The standard color augmentation in [21] is used. We adopt batch normalization (BN) [16] right after each convolution and before activation, following [16]. We initialize the weights as in [12] and train all plain/residual nets from scratch. We use SGD with a mini-batch size of 256. The learning rate starts from 0.1 and is divided by 10 when the error plateaus, and the models are trained for up to 60 × 104 iterations. We use a weight decay of 0.0001 and a momentum of 0.9. We do not use dropout [13], following the practice in [16]. In testing, for comparison studies we adopt the standard 10-crop testing [21]. For best results, we adopt the fully- convolutional form as in [40, 12], and average the scores at multiple scales (images are resized such that the shorter side is in {224, 256, 384, 480, 640}). 4. Experiments 4.1. ImageNet Classification We evaluate our method on the ImageNet 2012 classifi- cation dataset [35] that consists of 1000 classes. The models are trained on the 1.28 million training images, and evalu- ated on the 50k validation images. We also obtain a final result on the 100k test images, reported by the test server. We evaluate both top-1 and top-5 error rates. Plain Networks. We first evaluate 18-layer and 34-layer He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. ResNet-101 Applied to Gender Classification https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet101-celeba.ipynb
  9. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    9 Identity John Doe Gender Male Age 65 Medical Healthy SOFT BIOMETRIC ATTRIBUTES Race Caucasian Identity https://media.pitchfork.com/photos/59c0335abe5bf47cb9787b75/2:1/w_790/lynch.jpg John Doe Age 65 Race Caucasian Medical Healthy SOFT BIOMETRIC ATTRIBUTES
  10. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    10 Color Size Price green M 10.1 red L 13.5 blue XXL 15.3 Types of Labels in Supervised Learning Tasks Nominal type
 Task: classification Ordinal type
 Task: ordinal regression Continuous
 Task: metric regression
  11. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    11 rK ≻ rK−1 ≻ . . . ≻ r1 E.g., movie ratings: great ≻ good ≻ okay ≻ for genre fans ≻ bad but no metric distance Ordinal regression, also called ordinal classification or ranking 
 (although ranking is a bit different) Order dependence like in metric regression, discrete values like in classification, 
 but order dependence/information Ordinal Regression
  12. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    12 • Ranking: Correct order matters 
 (0 loss if order is correct, e.g., rank a collection of movies by "goodness") • Ordinal Regression: Correct label matters (as well)
 (E.g., age of a person in years; here, regard aging as a non-stationary process) ≻ Excerpt from the UTKFace dataset
 https://susanqq.github.io/UTKFace/ 18 29 41 Supervised Learning: Ordinal Regression ≻ ≻ ≻ We will work with this dataset in the hands-on tutorial this afternoon!
  13. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    13 Input image 7x7 conv @64 stride=2 … 3x3 conv @512 stride=1 . . . Weight sharing across k-1 tasks . . . b1 <latexit sha1_base64="oxRwFKiWcKO5u9w5ICndUHjxWWI=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorYew7/fdqlfz5iKr4BdQhUKNvvvVGyQsi7lCJqkxXd9LMcipRsEkn1Z6meEpZWM65F2LisbcBPl81Sk5s86ARIm2TyGZu78nchobM4lD2xlTHJnl2sz8r9bNMLoOcqHSDLlii4+iTBJMyOxuMhCaM5QTC5RpYXclbEQ1ZWjTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+yPn8AeofjYo=</latexit> <latexit sha1_base64="oxRwFKiWcKO5u9w5ICndUHjxWWI=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorYew7/fdqlfz5iKr4BdQhUKNvvvVGyQsi7lCJqkxXd9LMcipRsEkn1Z6meEpZWM65F2LisbcBPl81Sk5s86ARIm2TyGZu78nchobM4lD2xlTHJnl2sz8r9bNMLoOcqHSDLlii4+iTBJMyOxuMhCaM5QTC5RpYXclbEQ1ZWjTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+yPn8AeofjYo=</latexit> <latexit sha1_base64="oxRwFKiWcKO5u9w5ICndUHjxWWI=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorYew7/fdqlfz5iKr4BdQhUKNvvvVGyQsi7lCJqkxXd9LMcipRsEkn1Z6meEpZWM65F2LisbcBPl81Sk5s86ARIm2TyGZu78nchobM4lD2xlTHJnl2sz8r9bNMLoOcqHSDLlii4+iTBJMyOxuMhCaM5QTC5RpYXclbEQ1ZWjTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+yPn8AeofjYo=</latexit> <latexit sha1_base64="oxRwFKiWcKO5u9w5ICndUHjxWWI=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorYew7/fdqlfz5iKr4BdQhUKNvvvVGyQsi7lCJqkxXd9LMcipRsEkn1Z6meEpZWM65F2LisbcBPl81Sk5s86ARIm2TyGZu78nchobM4lD2xlTHJnl2sz8r9bNMLoOcqHSDLlii4+iTBJMyOxuMhCaM5QTC5RpYXclbEQ1ZWjTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+yPn8AeofjYo=</latexit> b2 <latexit sha1_base64="KmwIREzjRQ4yYecphZP2rZMfohI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrYdgUBuUK27VXYisg5dDBXI1B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYsShqh9rPFqjNyYZ0hCWNlnzRk4f6eyGik9TQKbGdEzViv1ubmf7VeasJrP+MySQ1KtvwoTAUxMZnfTYZcITNiaoEyxe2uhI2poszYdEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hj5zPH+ujjYs=</latexit> <latexit sha1_base64="KmwIREzjRQ4yYecphZP2rZMfohI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrYdgUBuUK27VXYisg5dDBXI1B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYsShqh9rPFqjNyYZ0hCWNlnzRk4f6eyGik9TQKbGdEzViv1ubmf7VeasJrP+MySQ1KtvwoTAUxMZnfTYZcITNiaoEyxe2uhI2poszYdEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hj5zPH+ujjYs=</latexit> <latexit sha1_base64="KmwIREzjRQ4yYecphZP2rZMfohI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrYdgUBuUK27VXYisg5dDBXI1B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYsShqh9rPFqjNyYZ0hCWNlnzRk4f6eyGik9TQKbGdEzViv1ubmf7VeasJrP+MySQ1KtvwoTAUxMZnfTYZcITNiaoEyxe2uhI2poszYdEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hj5zPH+ujjYs=</latexit> <latexit sha1_base64="KmwIREzjRQ4yYecphZP2rZMfohI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrYdgUBuUK27VXYisg5dDBXI1B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYsShqh9rPFqjNyYZ0hCWNlnzRk4f6eyGik9TQKbGdEzViv1ubmf7VeasJrP+MySQ1KtvwoTAUxMZnfTYZcITNiaoEyxe2uhI2poszYdEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hj5zPH+ujjYs=</latexit> w1 <latexit sha1_base64="ozSIzVA/SGXegmac4XRXthOpvw0=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjRfsBbSib7aZdutmE3YlSQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9m9fYj10bE6gEnCfcjOlQiFIyite6f+l6/XHGr7lxkFbwcKpCr0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXoqIRN342X3VKzqwzIGGs7VNI5u7viYxGxkyiwHZGFEdmuTYz/6t1Uwyv/EyoJEWu2OKjMJUEYzK7mwyE5gzlxAJlWthdCRtRTRnadEo2BG/55FVoXVQ9y3eXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzmfPwosjZ8=</latexit> <latexit sha1_base64="ozSIzVA/SGXegmac4XRXthOpvw0=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjRfsBbSib7aZdutmE3YlSQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9m9fYj10bE6gEnCfcjOlQiFIyite6f+l6/XHGr7lxkFbwcKpCr0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXoqIRN342X3VKzqwzIGGs7VNI5u7viYxGxkyiwHZGFEdmuTYz/6t1Uwyv/EyoJEWu2OKjMJUEYzK7mwyE5gzlxAJlWthdCRtRTRnadEo2BG/55FVoXVQ9y3eXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzmfPwosjZ8=</latexit> <latexit sha1_base64="ozSIzVA/SGXegmac4XRXthOpvw0=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjRfsBbSib7aZdutmE3YlSQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9m9fYj10bE6gEnCfcjOlQiFIyite6f+l6/XHGr7lxkFbwcKpCr0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXoqIRN342X3VKzqwzIGGs7VNI5u7viYxGxkyiwHZGFEdmuTYz/6t1Uwyv/EyoJEWu2OKjMJUEYzK7mwyE5gzlxAJlWthdCRtRTRnadEo2BG/55FVoXVQ9y3eXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzmfPwosjZ8=</latexit> <latexit sha1_base64="ozSIzVA/SGXegmac4XRXthOpvw0=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjRfsBbSib7aZdutmE3YlSQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9m9fYj10bE6gEnCfcjOlQiFIyite6f+l6/XHGr7lxkFbwcKpCr0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXoqIRN342X3VKzqwzIGGs7VNI5u7viYxGxkyiwHZGFEdmuTYz/6t1Uwyv/EyoJEWu2OKjMJUEYzK7mwyE5gzlxAJlWthdCRtRTRnadEo2BG/55FVoXVQ9y3eXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzmfPwosjZ8=</latexit> w2 <latexit sha1_base64="sAAe226MpFncoK5AcSpzzUnkA9I=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix6MVjRfsBbSib7aZdutmE3YlSQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9m9fYj10bE6gEnCfcjOlQiFIyite6f+rV+ueJW3bnIKng5VCBXo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKuRUUjbvxsvuqUnFlnQMJY26eQzN3fExmNjJlEge2MKI7Mcm1m/lfrphhe+ZlQSYpcscVHYSoJxmR2NxkIzRnKiQXKtLC7EjaimjK06ZRsCN7yyavQqlU9y3cXlfp1HkcRTuAUzsGDS6jDLTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3I+fwALsI2g</latexit> <latexit sha1_base64="sAAe226MpFncoK5AcSpzzUnkA9I=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix6MVjRfsBbSib7aZdutmE3YlSQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9m9fYj10bE6gEnCfcjOlQiFIyite6f+rV+ueJW3bnIKng5VCBXo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKuRUUjbvxsvuqUnFlnQMJY26eQzN3fExmNjJlEge2MKI7Mcm1m/lfrphhe+ZlQSYpcscVHYSoJxmR2NxkIzRnKiQXKtLC7EjaimjK06ZRsCN7yyavQqlU9y3cXlfp1HkcRTuAUzsGDS6jDLTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3I+fwALsI2g</latexit> <latexit sha1_base64="sAAe226MpFncoK5AcSpzzUnkA9I=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix6MVjRfsBbSib7aZdutmE3YlSQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9m9fYj10bE6gEnCfcjOlQiFIyite6f+rV+ueJW3bnIKng5VCBXo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKuRUUjbvxsvuqUnFlnQMJY26eQzN3fExmNjJlEge2MKI7Mcm1m/lfrphhe+ZlQSYpcscVHYSoJxmR2NxkIzRnKiQXKtLC7EjaimjK06ZRsCN7yyavQqlU9y3cXlfp1HkcRTuAUzsGDS6jDLTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3I+fwALsI2g</latexit> <latexit sha1_base64="sAAe226MpFncoK5AcSpzzUnkA9I=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix6MVjRfsBbSib7aZdutmE3YlSQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9m9fYj10bE6gEnCfcjOlQiFIyite6f+rV+ueJW3bnIKng5VCBXo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKuRUUjbvxsvuqUnFlnQMJY26eQzN3fExmNjJlEge2MKI7Mcm1m/lfrphhe+ZlQSYpcscVHYSoJxmR2NxkIzRnKiQXKtLC7EjaimjK06ZRsCN7yyavQqlU9y3cXlfp1HkcRTuAUzsGDS6jDLTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3I+fwALsI2g</latexit> . . . ResNet-34 7x7 AvgPool stride=1 wm <latexit sha1_base64="3SltFZgdSbEccduFdJMJ4sVJM+s=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHirYW2qVk07QNTbJLMquUpT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wsrq2vlHcLG1t7+zulfcPmjZODeMNFsvYtCJquRSaN1Cg5K3EcKoiyR+i0fW0/vDIjRWxvsdxwkNFB1r0BaPorLunruqWK37Vn4ksQ5BDBXLVu+WvTi9mqeIamaTWtgM/wTCjBgWTfFLqpJYnlI3ogLcdaqq4DbPZqhNy4pwe6cfGPY1k5v6eyKiydqwi16koDu1ibWr+V2un2L8MM6GTFLlm84/6qSQYk+ndpCcMZyjHDigzwu1K2JAaytClU3IhBIsnL0PzrBo4vj2v1K7yOIpwBMdwCgFcQA1uoA4NYDCAZ3iFN096L9679zFvLXj5zCH8kff5A2Ucjds=</latexit> <latexit sha1_base64="3SltFZgdSbEccduFdJMJ4sVJM+s=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHirYW2qVk07QNTbJLMquUpT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wsrq2vlHcLG1t7+zulfcPmjZODeMNFsvYtCJquRSaN1Cg5K3EcKoiyR+i0fW0/vDIjRWxvsdxwkNFB1r0BaPorLunruqWK37Vn4ksQ5BDBXLVu+WvTi9mqeIamaTWtgM/wTCjBgWTfFLqpJYnlI3ogLcdaqq4DbPZqhNy4pwe6cfGPY1k5v6eyKiydqwi16koDu1ibWr+V2un2L8MM6GTFLlm84/6qSQYk+ndpCcMZyjHDigzwu1K2JAaytClU3IhBIsnL0PzrBo4vj2v1K7yOIpwBMdwCgFcQA1uoA4NYDCAZ3iFN096L9679zFvLXj5zCH8kff5A2Ucjds=</latexit> <latexit sha1_base64="3SltFZgdSbEccduFdJMJ4sVJM+s=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHirYW2qVk07QNTbJLMquUpT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wsrq2vlHcLG1t7+zulfcPmjZODeMNFsvYtCJquRSaN1Cg5K3EcKoiyR+i0fW0/vDIjRWxvsdxwkNFB1r0BaPorLunruqWK37Vn4ksQ5BDBXLVu+WvTi9mqeIamaTWtgM/wTCjBgWTfFLqpJYnlI3ogLcdaqq4DbPZqhNy4pwe6cfGPY1k5v6eyKiydqwi16koDu1ibWr+V2un2L8MM6GTFLlm84/6qSQYk+ndpCcMZyjHDigzwu1K2JAaytClU3IhBIsnL0PzrBo4vj2v1K7yOIpwBMdwCgFcQA1uoA4NYDCAZ3iFN096L9679zFvLXj5zCH8kff5A2Ucjds=</latexit> <latexit sha1_base64="3SltFZgdSbEccduFdJMJ4sVJM+s=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHirYW2qVk07QNTbJLMquUpT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wsrq2vlHcLG1t7+zulfcPmjZODeMNFsvYtCJquRSaN1Cg5K3EcKoiyR+i0fW0/vDIjRWxvsdxwkNFB1r0BaPorLunruqWK37Vn4ksQ5BDBXLVu+WvTi9mqeIamaTWtgM/wTCjBgWTfFLqpJYnlI3ogLcdaqq4DbPZqhNy4pwe6cfGPY1k5v6eyKiydqwi16koDu1ibWr+V2un2L8MM6GTFLlm84/6qSQYk+ndpCcMZyjHDigzwu1K2JAaytClU3IhBIsnL0PzrBo4vj2v1K7yOIpwBMdwCgFcQA1uoA4NYDCAZ3iFN096L9679zFvLXj5zCH8kff5A2Ucjds=</latexit> { <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> K 1 <latexit sha1_base64="r9EyNDc4ZkK0RbMq+OXc0Let6lU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8GJJRNBj0YvgpaL9gDaUzXbSLt1swu5GKKE/wYsHRbz6i7z5b9y2OWjrCwsP78ywM2+QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwehmWm89odI8lo9mnKAf0YHkIWfUWOvh7szrlStu1Z2JLIOXQwVy1Xvlr24/ZmmE0jBBte54bmL8jCrDmcBJqZtqTCgb0QF2LEoaofaz2aoTcmKdPgljZZ80ZOb+nshopPU4CmxnRM1QL9am5n+1TmrCKz/jMkkNSjb/KEwFMTGZ3k36XCEzYmyBMsXtroQNqaLM2HRKNgRv8eRlaJ5XPcv3F5XadR5HEY7gGE7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9yPn8AexuNQQ==</latexit> <latexit sha1_base64="r9EyNDc4ZkK0RbMq+OXc0Let6lU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8GJJRNBj0YvgpaL9gDaUzXbSLt1swu5GKKE/wYsHRbz6i7z5b9y2OWjrCwsP78ywM2+QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwehmWm89odI8lo9mnKAf0YHkIWfUWOvh7szrlStu1Z2JLIOXQwVy1Xvlr24/ZmmE0jBBte54bmL8jCrDmcBJqZtqTCgb0QF2LEoaofaz2aoTcmKdPgljZZ80ZOb+nshopPU4CmxnRM1QL9am5n+1TmrCKz/jMkkNSjb/KEwFMTGZ3k36XCEzYmyBMsXtroQNqaLM2HRKNgRv8eRlaJ5XPcv3F5XadR5HEY7gGE7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9yPn8AexuNQQ==</latexit> <latexit sha1_base64="r9EyNDc4ZkK0RbMq+OXc0Let6lU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8GJJRNBj0YvgpaL9gDaUzXbSLt1swu5GKKE/wYsHRbz6i7z5b9y2OWjrCwsP78ywM2+QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwehmWm89odI8lo9mnKAf0YHkIWfUWOvh7szrlStu1Z2JLIOXQwVy1Xvlr24/ZmmE0jBBte54bmL8jCrDmcBJqZtqTCgb0QF2LEoaofaz2aoTcmKdPgljZZ80ZOb+nshopPU4CmxnRM1QL9am5n+1TmrCKz/jMkkNSjb/KEwFMTGZ3k36XCEzYmyBMsXtroQNqaLM2HRKNgRv8eRlaJ5XPcv3F5XadR5HEY7gGE7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9yPn8AexuNQQ==</latexit> <latexit sha1_base64="r9EyNDc4ZkK0RbMq+OXc0Let6lU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8GJJRNBj0YvgpaL9gDaUzXbSLt1swu5GKKE/wYsHRbz6i7z5b9y2OWjrCwsP78ywM2+QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwehmWm89odI8lo9mnKAf0YHkIWfUWOvh7szrlStu1Z2JLIOXQwVy1Xvlr24/ZmmE0jBBte54bmL8jCrDmcBJqZtqTCgb0QF2LEoaofaz2aoTcmKdPgljZZ80ZOb+nshopPU4CmxnRM1QL9am5n+1TmrCKz/jMkkNSjb/KEwFMTGZ3k36XCEzYmyBMsXtroQNqaLM2HRKNgRv8eRlaJ5XPcv3F5XadR5HEY7gGE7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9yPn8AexuNQQ==</latexit> bK 1 <latexit sha1_base64="LwOEvZG6tsrLM9p/zFnxWW88ucU=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8GJJpKDHohfBSwX7AW0om+2mXbrZhN2JUEJ/hBcPinj193jz37htc9DWFxYe3plhZ94gkcKg6347hbX1jc2t4nZpZ3dv/6B8eNQycaoZb7JYxroTUMOlULyJAiXvJJrTKJC8HYxvZ/X2E9dGxOoRJwn3IzpUIhSMorXaQT+7v/Cm/XLFrbpzkVXwcqhArka//NUbxCyNuEImqTFdz03Qz6hGwSSflnqp4QllYzrkXYuKRtz42XzdKTmzzoCEsbZPIZm7vycyGhkziQLbGVEcmeXazPyv1k0xvPYzoZIUuWKLj8JUEozJ7HYyEJozlBMLlGlhdyVsRDVlaBMq2RC85ZNXoXVZ9Sw/1Cr1mzyOIpzAKZyDB1dQhztoQBMYjOEZXuHNSZwX5935WLQWnHzmGP7I+fwBshSPIg==</latexit> <latexit sha1_base64="LwOEvZG6tsrLM9p/zFnxWW88ucU=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8GJJpKDHohfBSwX7AW0om+2mXbrZhN2JUEJ/hBcPinj193jz37htc9DWFxYe3plhZ94gkcKg6347hbX1jc2t4nZpZ3dv/6B8eNQycaoZb7JYxroTUMOlULyJAiXvJJrTKJC8HYxvZ/X2E9dGxOoRJwn3IzpUIhSMorXaQT+7v/Cm/XLFrbpzkVXwcqhArka//NUbxCyNuEImqTFdz03Qz6hGwSSflnqp4QllYzrkXYuKRtz42XzdKTmzzoCEsbZPIZm7vycyGhkziQLbGVEcmeXazPyv1k0xvPYzoZIUuWKLj8JUEozJ7HYyEJozlBMLlGlhdyVsRDVlaBMq2RC85ZNXoXVZ9Sw/1Cr1mzyOIpzAKZyDB1dQhztoQBMYjOEZXuHNSZwX5935WLQWnHzmGP7I+fwBshSPIg==</latexit> <latexit sha1_base64="LwOEvZG6tsrLM9p/zFnxWW88ucU=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8GJJpKDHohfBSwX7AW0om+2mXbrZhN2JUEJ/hBcPinj193jz37htc9DWFxYe3plhZ94gkcKg6347hbX1jc2t4nZpZ3dv/6B8eNQycaoZb7JYxroTUMOlULyJAiXvJJrTKJC8HYxvZ/X2E9dGxOoRJwn3IzpUIhSMorXaQT+7v/Cm/XLFrbpzkVXwcqhArka//NUbxCyNuEImqTFdz03Qz6hGwSSflnqp4QllYzrkXYuKRtz42XzdKTmzzoCEsbZPIZm7vycyGhkziQLbGVEcmeXazPyv1k0xvPYzoZIUuWKLj8JUEozJ7HYyEJozlBMLlGlhdyVsRDVlaBMq2RC85ZNXoXVZ9Sw/1Cr1mzyOIpzAKZyDB1dQhztoQBMYjOEZXuHNSZwX5935WLQWnHzmGP7I+fwBshSPIg==</latexit> <latexit sha1_base64="LwOEvZG6tsrLM9p/zFnxWW88ucU=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8GJJpKDHohfBSwX7AW0om+2mXbrZhN2JUEJ/hBcPinj193jz37htc9DWFxYe3plhZ94gkcKg6347hbX1jc2t4nZpZ3dv/6B8eNQycaoZb7JYxroTUMOlULyJAiXvJJrTKJC8HYxvZ/X2E9dGxOoRJwn3IzpUIhSMorXaQT+7v/Cm/XLFrbpzkVXwcqhArka//NUbxCyNuEImqTFdz03Qz6hGwSSflnqp4QllYzrkXYuKRtz42XzdKTmzzoCEsbZPIZm7vycyGhkziQLbGVEcmeXazPyv1k0xvPYzoZIUuWKLj8JUEozJ7HYyEJozlBMLlGlhdyVsRDVlaBMq2RC85ZNXoXVZ9Sw/1Cr1mzyOIpzAKZyDB1dQhztoQBMYjOEZXuHNSZwX5935WLQWnHzmGP7I+fwBshSPIg==</latexit> b P(yi > r1) <latexit sha1_base64="JEWZgW/c9FbzIeNeK3w5m6yuKL4=">AAAB/XicbZDLSsNAFIYn9VbrLV52boJFqJuSiKArKbpxWcFeoA1hMjlph04mYWaixFB8FTcuFHHre7jzbZy2WWjrDwMf/zmHc+b3E0alsu1vo7S0vLK6Vl6vbGxube+Yu3ttGaeCQIvELBZdH0tglENLUcWgmwjAkc+g44+uJ/XOPQhJY36nsgTcCA84DSnBSlueedB/oAEMscqb41rm0UvhOSeeWbXr9lTWIjgFVFGhpmd+9YOYpBFwRRiWsufYiXJzLBQlDMaVfiohwWSEB9DTyHEE0s2n14+tY+0EVhgL/biypu7viRxHUmaRrzsjrIZyvjYx/6v1UhVeuDnlSaqAk9miMGWWiq1JFFZABRDFMg2YCKpvtcgQC0yUDqyiQ3Dmv7wI7dO6o/n2rNq4KuIoo0N0hGrIQeeogW5QE7UQQY/oGb2iN+PJeDHejY9Za8koZvbRHxmfP9pzlM8=</latexit> <latexit sha1_base64="JEWZgW/c9FbzIeNeK3w5m6yuKL4=">AAAB/XicbZDLSsNAFIYn9VbrLV52boJFqJuSiKArKbpxWcFeoA1hMjlph04mYWaixFB8FTcuFHHre7jzbZy2WWjrDwMf/zmHc+b3E0alsu1vo7S0vLK6Vl6vbGxube+Yu3ttGaeCQIvELBZdH0tglENLUcWgmwjAkc+g44+uJ/XOPQhJY36nsgTcCA84DSnBSlueedB/oAEMscqb41rm0UvhOSeeWbXr9lTWIjgFVFGhpmd+9YOYpBFwRRiWsufYiXJzLBQlDMaVfiohwWSEB9DTyHEE0s2n14+tY+0EVhgL/biypu7viRxHUmaRrzsjrIZyvjYx/6v1UhVeuDnlSaqAk9miMGWWiq1JFFZABRDFMg2YCKpvtcgQC0yUDqyiQ3Dmv7wI7dO6o/n2rNq4KuIoo0N0hGrIQeeogW5QE7UQQY/oGb2iN+PJeDHejY9Za8koZvbRHxmfP9pzlM8=</latexit> <latexit sha1_base64="JEWZgW/c9FbzIeNeK3w5m6yuKL4=">AAAB/XicbZDLSsNAFIYn9VbrLV52boJFqJuSiKArKbpxWcFeoA1hMjlph04mYWaixFB8FTcuFHHre7jzbZy2WWjrDwMf/zmHc+b3E0alsu1vo7S0vLK6Vl6vbGxube+Yu3ttGaeCQIvELBZdH0tglENLUcWgmwjAkc+g44+uJ/XOPQhJY36nsgTcCA84DSnBSlueedB/oAEMscqb41rm0UvhOSeeWbXr9lTWIjgFVFGhpmd+9YOYpBFwRRiWsufYiXJzLBQlDMaVfiohwWSEB9DTyHEE0s2n14+tY+0EVhgL/biypu7viRxHUmaRrzsjrIZyvjYx/6v1UhVeuDnlSaqAk9miMGWWiq1JFFZABRDFMg2YCKpvtcgQC0yUDqyiQ3Dmv7wI7dO6o/n2rNq4KuIoo0N0hGrIQeeogW5QE7UQQY/oGb2iN+PJeDHejY9Za8koZvbRHxmfP9pzlM8=</latexit> <latexit sha1_base64="JEWZgW/c9FbzIeNeK3w5m6yuKL4=">AAAB/XicbZDLSsNAFIYn9VbrLV52boJFqJuSiKArKbpxWcFeoA1hMjlph04mYWaixFB8FTcuFHHre7jzbZy2WWjrDwMf/zmHc+b3E0alsu1vo7S0vLK6Vl6vbGxube+Yu3ttGaeCQIvELBZdH0tglENLUcWgmwjAkc+g44+uJ/XOPQhJY36nsgTcCA84DSnBSlueedB/oAEMscqb41rm0UvhOSeeWbXr9lTWIjgFVFGhpmd+9YOYpBFwRRiWsufYiXJzLBQlDMaVfiohwWSEB9DTyHEE0s2n14+tY+0EVhgL/biypu7viRxHUmaRrzsjrIZyvjYx/6v1UhVeuDnlSaqAk9miMGWWiq1JFFZABRDFMg2YCKpvtcgQC0yUDqyiQ3Dmv7wI7dO6o/n2rNq4KuIoo0N0hGrIQeeogW5QE7UQQY/oGb2iN+PJeDHejY9Za8koZvbRHxmfP9pzlM8=</latexit> b P(yi > r2) <latexit sha1_base64="TTPnmRaLx/eL+eApEw1jpI9oVN4=">AAAB/XicbZDLSsNAFIZPvNZ6i5edm2AR6qYkRdCVFN24rGAv0IYwmUzaoZNJmJkoMRRfxY0LRdz6Hu58G6dtFtr6w8DHf87hnPn9hFGpbPvbWFpeWV1bL22UN7e2d3bNvf22jFOBSQvHLBZdH0nCKCctRRUj3UQQFPmMdPzR9aTeuSdC0pjfqSwhboQGnIYUI6UtzzzsP9CADJHKm+Nq5tFL4dVPPbNi1+yprEVwCqhAoaZnfvWDGKcR4QozJGXPsRPl5kgoihkZl/upJAnCIzQgPY0cRUS6+fT6sXWincAKY6EfV9bU/T2Ro0jKLPJ1Z4TUUM7XJuZ/tV6qwgs3pzxJFeF4tihMmaViaxKFFVBBsGKZBoQF1bdaeIgEwkoHVtYhOPNfXoR2veZovj2rNK6KOEpwBMdQBQfOoQE30IQWYHiEZ3iFN+PJeDHejY9Z65JRzBzAHxmfP9v4lNA=</latexit> <latexit sha1_base64="TTPnmRaLx/eL+eApEw1jpI9oVN4=">AAAB/XicbZDLSsNAFIZPvNZ6i5edm2AR6qYkRdCVFN24rGAv0IYwmUzaoZNJmJkoMRRfxY0LRdz6Hu58G6dtFtr6w8DHf87hnPn9hFGpbPvbWFpeWV1bL22UN7e2d3bNvf22jFOBSQvHLBZdH0nCKCctRRUj3UQQFPmMdPzR9aTeuSdC0pjfqSwhboQGnIYUI6UtzzzsP9CADJHKm+Nq5tFL4dVPPbNi1+yprEVwCqhAoaZnfvWDGKcR4QozJGXPsRPl5kgoihkZl/upJAnCIzQgPY0cRUS6+fT6sXWincAKY6EfV9bU/T2Ro0jKLPJ1Z4TUUM7XJuZ/tV6qwgs3pzxJFeF4tihMmaViaxKFFVBBsGKZBoQF1bdaeIgEwkoHVtYhOPNfXoR2veZovj2rNK6KOEpwBMdQBQfOoQE30IQWYHiEZ3iFN+PJeDHejY9Z65JRzBzAHxmfP9v4lNA=</latexit> <latexit sha1_base64="TTPnmRaLx/eL+eApEw1jpI9oVN4=">AAAB/XicbZDLSsNAFIZPvNZ6i5edm2AR6qYkRdCVFN24rGAv0IYwmUzaoZNJmJkoMRRfxY0LRdz6Hu58G6dtFtr6w8DHf87hnPn9hFGpbPvbWFpeWV1bL22UN7e2d3bNvf22jFOBSQvHLBZdH0nCKCctRRUj3UQQFPmMdPzR9aTeuSdC0pjfqSwhboQGnIYUI6UtzzzsP9CADJHKm+Nq5tFL4dVPPbNi1+yprEVwCqhAoaZnfvWDGKcR4QozJGXPsRPl5kgoihkZl/upJAnCIzQgPY0cRUS6+fT6sXWincAKY6EfV9bU/T2Ro0jKLPJ1Z4TUUM7XJuZ/tV6qwgs3pzxJFeF4tihMmaViaxKFFVBBsGKZBoQF1bdaeIgEwkoHVtYhOPNfXoR2veZovj2rNK6KOEpwBMdQBQfOoQE30IQWYHiEZ3iFN+PJeDHejY9Z65JRzBzAHxmfP9v4lNA=</latexit> <latexit sha1_base64="TTPnmRaLx/eL+eApEw1jpI9oVN4=">AAAB/XicbZDLSsNAFIZPvNZ6i5edm2AR6qYkRdCVFN24rGAv0IYwmUzaoZNJmJkoMRRfxY0LRdz6Hu58G6dtFtr6w8DHf87hnPn9hFGpbPvbWFpeWV1bL22UN7e2d3bNvf22jFOBSQvHLBZdH0nCKCctRRUj3UQQFPmMdPzR9aTeuSdC0pjfqSwhboQGnIYUI6UtzzzsP9CADJHKm+Nq5tFL4dVPPbNi1+yprEVwCqhAoaZnfvWDGKcR4QozJGXPsRPl5kgoihkZl/upJAnCIzQgPY0cRUS6+fT6sXWincAKY6EfV9bU/T2Ro0jKLPJ1Z4TUUM7XJuZ/tV6qwgs3pzxJFeF4tihMmaViaxKFFVBBsGKZBoQF1bdaeIgEwkoHVtYhOPNfXoR2veZovj2rNK6KOEpwBMdQBQfOoQE30IQWYHiEZ3iFN+PJeDHejY9Z65JRzBzAHxmfP9v4lNA=</latexit> b P(yi > rK 1) <latexit sha1_base64="EsrSGPlu5mWGfLIJjs5E47reN0Y=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLqwJCLoSopuBDcV7AXaECaTSTt0MgkzEyWEuPFV3LhQxK1v4c63cdpmoa0/DHz85xzOnN+LGZXKsr6N0sLi0vJKebWytr6xuWVu77RllAhMWjhikeh6SBJGOWkpqhjpxoKg0GOk442uxvXOPRGSRvxOpTFxQjTgNKAYKW255l7/gfpkiFTWzGupSy+Em90c2/mRa1atujURnAe7gCoo1HTNr74f4SQkXGGGpOzZVqycDAlFMSN5pZ9IEiM8QgPS08hRSKSTTS7I4aF2fBhEQj+u4MT9PZGhUMo09HRniNRQztbG5n+1XqKCcyejPE4U4Xi6KEgYVBEcxwF9KghWLNWAsKD6rxAPkUBY6dAqOgR79uR5aJ/Ubc23p9XGZRFHGeyDA1ADNjgDDXANmqAFMHgEz+AVvBlPxovxbnxMW0tGMbML/sj4/AG94JZn</latexit> <latexit sha1_base64="EsrSGPlu5mWGfLIJjs5E47reN0Y=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLqwJCLoSopuBDcV7AXaECaTSTt0MgkzEyWEuPFV3LhQxK1v4c63cdpmoa0/DHz85xzOnN+LGZXKsr6N0sLi0vJKebWytr6xuWVu77RllAhMWjhikeh6SBJGOWkpqhjpxoKg0GOk442uxvXOPRGSRvxOpTFxQjTgNKAYKW255l7/gfpkiFTWzGupSy+Em90c2/mRa1atujURnAe7gCoo1HTNr74f4SQkXGGGpOzZVqycDAlFMSN5pZ9IEiM8QgPS08hRSKSTTS7I4aF2fBhEQj+u4MT9PZGhUMo09HRniNRQztbG5n+1XqKCcyejPE4U4Xi6KEgYVBEcxwF9KghWLNWAsKD6rxAPkUBY6dAqOgR79uR5aJ/Ubc23p9XGZRFHGeyDA1ADNjgDDXANmqAFMHgEz+AVvBlPxovxbnxMW0tGMbML/sj4/AG94JZn</latexit> <latexit sha1_base64="EsrSGPlu5mWGfLIJjs5E47reN0Y=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLqwJCLoSopuBDcV7AXaECaTSTt0MgkzEyWEuPFV3LhQxK1v4c63cdpmoa0/DHz85xzOnN+LGZXKsr6N0sLi0vJKebWytr6xuWVu77RllAhMWjhikeh6SBJGOWkpqhjpxoKg0GOk442uxvXOPRGSRvxOpTFxQjTgNKAYKW255l7/gfpkiFTWzGupSy+Em90c2/mRa1atujURnAe7gCoo1HTNr74f4SQkXGGGpOzZVqycDAlFMSN5pZ9IEiM8QgPS08hRSKSTTS7I4aF2fBhEQj+u4MT9PZGhUMo09HRniNRQztbG5n+1XqKCcyejPE4U4Xi6KEgYVBEcxwF9KghWLNWAsKD6rxAPkUBY6dAqOgR79uR5aJ/Ubc23p9XGZRFHGeyDA1ADNjgDDXANmqAFMHgEz+AVvBlPxovxbnxMW0tGMbML/sj4/AG94JZn</latexit> <latexit sha1_base64="EsrSGPlu5mWGfLIJjs5E47reN0Y=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLqwJCLoSopuBDcV7AXaECaTSTt0MgkzEyWEuPFV3LhQxK1v4c63cdpmoa0/DHz85xzOnN+LGZXKsr6N0sLi0vJKebWytr6xuWVu77RllAhMWjhikeh6SBJGOWkpqhjpxoKg0GOk442uxvXOPRGSRvxOpTFxQjTgNKAYKW255l7/gfpkiFTWzGupSy+Em90c2/mRa1atujURnAe7gCoo1HTNr74f4SQkXGGGpOzZVqycDAlFMSN5pZ9IEiM8QgPS08hRSKSTTS7I4aF2fBhEQj+u4MT9PZGhUMo09HRniNRQztbG5n+1XqKCcyejPE4U4Xi6KEgYVBEcxwF9KghWLNWAsKD6rxAPkUBY6dAqOgR79uR5aJ/Ubc23p9XGZRFHGeyDA1ADNjgDDXANmqAFMHgEz+AVvBlPxovxbnxMW0tGMbML/sj4/AG94JZn</latexit> { <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> Tasks { <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> a1 <latexit sha1_base64="i5nKWL2osYHJ2SU7NvALg/zpMfE=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTJdtMu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkU5Q1aSIS1QlRM8ElaxpuBOukimEcCtYOx7ezevuJKc0T+WgmKQtiHEoecYrGWg/Y9/tu1at5c5FV8AuoQqFG3/3qDRKaxUwaKlDrru+lJshRGU4Fm1Z6mWYp0jEOWdeixJjpIJ+vOiVn1hmQKFH2SUPm7u+JHGOtJ3FoO2M0I71cm5n/1bqZia6DnMs0M0zSxUdRJohJyOxuMuCKUSMmFpAqbncldIQKqbHpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATKAzhGV7hzRHOi/PufCxaS04xcwx/5Hz+AOiZjYk=</latexit> <latexit sha1_base64="i5nKWL2osYHJ2SU7NvALg/zpMfE=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTJdtMu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkU5Q1aSIS1QlRM8ElaxpuBOukimEcCtYOx7ezevuJKc0T+WgmKQtiHEoecYrGWg/Y9/tu1at5c5FV8AuoQqFG3/3qDRKaxUwaKlDrru+lJshRGU4Fm1Z6mWYp0jEOWdeixJjpIJ+vOiVn1hmQKFH2SUPm7u+JHGOtJ3FoO2M0I71cm5n/1bqZia6DnMs0M0zSxUdRJohJyOxuMuCKUSMmFpAqbncldIQKqbHpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATKAzhGV7hzRHOi/PufCxaS04xcwx/5Hz+AOiZjYk=</latexit> <latexit sha1_base64="i5nKWL2osYHJ2SU7NvALg/zpMfE=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTJdtMu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkU5Q1aSIS1QlRM8ElaxpuBOukimEcCtYOx7ezevuJKc0T+WgmKQtiHEoecYrGWg/Y9/tu1at5c5FV8AuoQqFG3/3qDRKaxUwaKlDrru+lJshRGU4Fm1Z6mWYp0jEOWdeixJjpIJ+vOiVn1hmQKFH2SUPm7u+JHGOtJ3FoO2M0I71cm5n/1bqZia6DnMs0M0zSxUdRJohJyOxuMuCKUSMmFpAqbncldIQKqbHpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATKAzhGV7hzRHOi/PufCxaS04xcwx/5Hz+AOiZjYk=</latexit> <latexit sha1_base64="i5nKWL2osYHJ2SU7NvALg/zpMfE=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTJdtMu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkU5Q1aSIS1QlRM8ElaxpuBOukimEcCtYOx7ezevuJKc0T+WgmKQtiHEoecYrGWg/Y9/tu1at5c5FV8AuoQqFG3/3qDRKaxUwaKlDrru+lJshRGU4Fm1Z6mWYp0jEOWdeixJjpIJ+vOiVn1hmQKFH2SUPm7u+JHGOtJ3FoO2M0I71cm5n/1bqZia6DnMs0M0zSxUdRJohJyOxuMuCKUSMmFpAqbncldIQKqbHpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATKAzhGV7hzRHOi/PufCxaS04xcwx/5Hz+AOiZjYk=</latexit> a2 <latexit sha1_base64="fHY8L0Lq6jayN2ybi5nRkuRgM8k=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lAm2027dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqaKsRWMRq26AmgkuWctwI1g3UQyjQLBOMLmd1ztPTGkey0czTZgf4UjykFM01nrAQW1QrrhVdyGyDl4OFcjVHJS/+sOYphGThgrUuue5ifEzVIZTwWalfqpZgnSCI9azKDFi2s8Wq87IhXWGJIyVfdKQhft7IsNI62kU2M4IzViv1ubmf7VeasJrP+MySQ2TdPlRmApiYjK/mwy5YtSIqQWkittdCR2jQmpsOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMIInuEV3hzhvDjvzseyteDkM6fwR87nD+odjYo=</latexit> <latexit sha1_base64="fHY8L0Lq6jayN2ybi5nRkuRgM8k=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lAm2027dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqaKsRWMRq26AmgkuWctwI1g3UQyjQLBOMLmd1ztPTGkey0czTZgf4UjykFM01nrAQW1QrrhVdyGyDl4OFcjVHJS/+sOYphGThgrUuue5ifEzVIZTwWalfqpZgnSCI9azKDFi2s8Wq87IhXWGJIyVfdKQhft7IsNI62kU2M4IzViv1ubmf7VeasJrP+MySQ2TdPlRmApiYjK/mwy5YtSIqQWkittdCR2jQmpsOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMIInuEV3hzhvDjvzseyteDkM6fwR87nD+odjYo=</latexit> <latexit sha1_base64="fHY8L0Lq6jayN2ybi5nRkuRgM8k=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lAm2027dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqaKsRWMRq26AmgkuWctwI1g3UQyjQLBOMLmd1ztPTGkey0czTZgf4UjykFM01nrAQW1QrrhVdyGyDl4OFcjVHJS/+sOYphGThgrUuue5ifEzVIZTwWalfqpZgnSCI9azKDFi2s8Wq87IhXWGJIyVfdKQhft7IsNI62kU2M4IzViv1ubmf7VeasJrP+MySQ2TdPlRmApiYjK/mwy5YtSIqQWkittdCR2jQmpsOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMIInuEV3hzhvDjvzseyteDkM6fwR87nD+odjYo=</latexit> <latexit sha1_base64="ck8pdC+ekZH4nUmSP+ZG7r8lEyk=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odOn4MoA7ncAFXEMIN3MEDdKALAhJ4hXdv4r15H6uuat66tDP4I+/zBzjGijg=</latexit> <latexit sha1_base64="5EnDFfMDBOio/2eay9En10Yo+dY=">AAAB33icbZBLSwMxFIXv+Ky1anXrJlgEV2WmG10KblxWtA9oh5JJ77ShmcyQ3BHK0J/gxoUi/it3/hvTx0JbDwQ+zknIvSfKlLTk+9/e1vbO7t5+6aB8WDk6PqmeVto2zY3AlkhVaroRt6ikxhZJUtjNDPIkUtiJJnfzvPOMxspUP9E0wzDhIy1jKTg565EPGoNqza/7C7FNCFZQg5Wag+pXf5iKPEFNQnFre4GfUVhwQ1IonJX7ucWMiwkfYc+h5gnasFiMOmOXzhmyODXuaGIL9/eLgifWTpPI3Uw4je16Njf/y3o5xTdhIXWWE2qx/CjOFaOUzfdmQ2lQkJo64MJINysTY264INdO2ZUQrK+8Ce1GPXD84EMJzuECriCAa7iFe2hCCwSM4AXe4N1T3qv3saxry1v1dgZ/5H3+AM+5jDU=</latexit> <latexit sha1_base64="5EnDFfMDBOio/2eay9En10Yo+dY=">AAAB33icbZBLSwMxFIXv+Ky1anXrJlgEV2WmG10KblxWtA9oh5JJ77ShmcyQ3BHK0J/gxoUi/it3/hvTx0JbDwQ+zknIvSfKlLTk+9/e1vbO7t5+6aB8WDk6PqmeVto2zY3AlkhVaroRt6ikxhZJUtjNDPIkUtiJJnfzvPOMxspUP9E0wzDhIy1jKTg565EPGoNqza/7C7FNCFZQg5Wag+pXf5iKPEFNQnFre4GfUVhwQ1IonJX7ucWMiwkfYc+h5gnasFiMOmOXzhmyODXuaGIL9/eLgifWTpPI3Uw4je16Njf/y3o5xTdhIXWWE2qx/CjOFaOUzfdmQ2lQkJo64MJINysTY264INdO2ZUQrK+8Ce1GPXD84EMJzuECriCAa7iFe2hCCwSM4AXe4N1T3qv3saxry1v1dgZ/5H3+AM+5jDU=</latexit> <latexit sha1_base64="p8tLOQbHVpAOVm/uqaDbqhYE8i4=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FSSXvRY9OKxov2ANpTJdtMu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTuljc2t7Z3ybmVv/+DwyD0+aeskU5S1aCIS1Q1RM8ElaxluBOumimEcCtYJJ7fzeueJKc0T+WimKQtiHEkecYrGWg84qA/cqlfzFiLr4BdQhULNgfvVHyY0i5k0VKDWPd9LTZCjMpwKNqv0M81SpBMcsZ5FiTHTQb5YdUYurDMkUaLsk4Ys3N8TOcZaT+PQdsZoxnq1Njf/q/UyE10HOZdpZpiky4+iTBCTkPndZMgVo0ZMLSBV3O5K6BgVUmPTqdgQ/NWT16Fdr/mW771q46aIowxncA6X4MMVNOAOmtACCiN4hld4c4Tz4rw7H8vWklPMnMIfOZ8/6N2Nhg==</latexit> <latexit sha1_base64="fHY8L0Lq6jayN2ybi5nRkuRgM8k=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lAm2027dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqaKsRWMRq26AmgkuWctwI1g3UQyjQLBOMLmd1ztPTGkey0czTZgf4UjykFM01nrAQW1QrrhVdyGyDl4OFcjVHJS/+sOYphGThgrUuue5ifEzVIZTwWalfqpZgnSCI9azKDFi2s8Wq87IhXWGJIyVfdKQhft7IsNI62kU2M4IzViv1ubmf7VeasJrP+MySQ2TdPlRmApiYjK/mwy5YtSIqQWkittdCR2jQmpsOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMIInuEV3hzhvDjvzseyteDkM6fwR87nD+odjYo=</latexit> <latexit sha1_base64="fHY8L0Lq6jayN2ybi5nRkuRgM8k=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lAm2027dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqaKsRWMRq26AmgkuWctwI1g3UQyjQLBOMLmd1ztPTGkey0czTZgf4UjykFM01nrAQW1QrrhVdyGyDl4OFcjVHJS/+sOYphGThgrUuue5ifEzVIZTwWalfqpZgnSCI9azKDFi2s8Wq87IhXWGJIyVfdKQhft7IsNI62kU2M4IzViv1ubmf7VeasJrP+MySQ2TdPlRmApiYjK/mwy5YtSIqQWkittdCR2jQmpsOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMIInuEV3hzhvDjvzseyteDkM6fwR87nD+odjYo=</latexit> <latexit sha1_base64="fHY8L0Lq6jayN2ybi5nRkuRgM8k=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lAm2027dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqaKsRWMRq26AmgkuWctwI1g3UQyjQLBOMLmd1ztPTGkey0czTZgf4UjykFM01nrAQW1QrrhVdyGyDl4OFcjVHJS/+sOYphGThgrUuue5ifEzVIZTwWalfqpZgnSCI9azKDFi2s8Wq87IhXWGJIyVfdKQhft7IsNI62kU2M4IzViv1ubmf7VeasJrP+MySQ2TdPlRmApiYjK/mwy5YtSIqQWkittdCR2jQmpsOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMIInuEV3hzhvDjvzseyteDkM6fwR87nD+odjYo=</latexit> <latexit sha1_base64="fHY8L0Lq6jayN2ybi5nRkuRgM8k=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lAm2027dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqaKsRWMRq26AmgkuWctwI1g3UQyjQLBOMLmd1ztPTGkey0czTZgf4UjykFM01nrAQW1QrrhVdyGyDl4OFcjVHJS/+sOYphGThgrUuue5ifEzVIZTwWalfqpZgnSCI9azKDFi2s8Wq87IhXWGJIyVfdKQhft7IsNI62kU2M4IzViv1ubmf7VeasJrP+MySQ2TdPlRmApiYjK/mwy5YtSIqQWkittdCR2jQmpsOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMIInuEV3hzhvDjvzseyteDkM6fwR87nD+odjYo=</latexit> <latexit sha1_base64="fHY8L0Lq6jayN2ybi5nRkuRgM8k=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lAm2027dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqaKsRWMRq26AmgkuWctwI1g3UQyjQLBOMLmd1ztPTGkey0czTZgf4UjykFM01nrAQW1QrrhVdyGyDl4OFcjVHJS/+sOYphGThgrUuue5ifEzVIZTwWalfqpZgnSCI9azKDFi2s8Wq87IhXWGJIyVfdKQhft7IsNI62kU2M4IzViv1ubmf7VeasJrP+MySQ2TdPlRmApiYjK/mwy5YtSIqQWkittdCR2jQmpsOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMIInuEV3hzhvDjvzseyteDkM6fwR87nD+odjYo=</latexit> <latexit sha1_base64="fHY8L0Lq6jayN2ybi5nRkuRgM8k=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lAm2027dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqaKsRWMRq26AmgkuWctwI1g3UQyjQLBOMLmd1ztPTGkey0czTZgf4UjykFM01nrAQW1QrrhVdyGyDl4OFcjVHJS/+sOYphGThgrUuue5ifEzVIZTwWalfqpZgnSCI9azKDFi2s8Wq87IhXWGJIyVfdKQhft7IsNI62kU2M4IzViv1ubmf7VeasJrP+MySQ2TdPlRmApiYjK/mwy5YtSIqQWkittdCR2jQmpsOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMIInuEV3hzhvDjvzseyteDkM6fwR87nD+odjYo=</latexit> am <latexit sha1_base64="uGkhqy/YuhTKr1EIG2B45HDVWx0=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHivYD2qXMptk2NMkuSVYopT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNU2SacoaNBGJbkdomOCKNSy3grVTzVBGgrWi0e2s3npi2vBEPdpxykKJA8VjTtE66wF7sleu+FV/LrIKQQ4VyFXvlb+6/YRmkilLBRrTCfzUhhPUllPBpqVuZliKdIQD1nGoUDITTuarTsmZc/okTrR7ypK5+3tigtKYsYxcp0Q7NMu1mflfrZPZ+DqccJVmlim6+CjOBLEJmd1N+lwzasXYAVLN3a6EDlEjtS6dkgshWD55FZoX1cDx/WWldpPHUYQTOIVzCOAKanAHdWgAhQE8wyu8ecJ78d69j0VrwctnjuGPvM8fQ5iNxQ==</latexit> <latexit sha1_base64="uGkhqy/YuhTKr1EIG2B45HDVWx0=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHivYD2qXMptk2NMkuSVYopT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNU2SacoaNBGJbkdomOCKNSy3grVTzVBGgrWi0e2s3npi2vBEPdpxykKJA8VjTtE66wF7sleu+FV/LrIKQQ4VyFXvlb+6/YRmkilLBRrTCfzUhhPUllPBpqVuZliKdIQD1nGoUDITTuarTsmZc/okTrR7ypK5+3tigtKYsYxcp0Q7NMu1mflfrZPZ+DqccJVmlim6+CjOBLEJmd1N+lwzasXYAVLN3a6EDlEjtS6dkgshWD55FZoX1cDx/WWldpPHUYQTOIVzCOAKanAHdWgAhQE8wyu8ecJ78d69j0VrwctnjuGPvM8fQ5iNxQ==</latexit> <latexit sha1_base64="uGkhqy/YuhTKr1EIG2B45HDVWx0=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHivYD2qXMptk2NMkuSVYopT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNU2SacoaNBGJbkdomOCKNSy3grVTzVBGgrWi0e2s3npi2vBEPdpxykKJA8VjTtE66wF7sleu+FV/LrIKQQ4VyFXvlb+6/YRmkilLBRrTCfzUhhPUllPBpqVuZliKdIQD1nGoUDITTuarTsmZc/okTrR7ypK5+3tigtKYsYxcp0Q7NMu1mflfrZPZ+DqccJVmlim6+CjOBLEJmd1N+lwzasXYAVLN3a6EDlEjtS6dkgshWD55FZoX1cDx/WWldpPHUYQTOIVzCOAKanAHdWgAhQE8wyu8ecJ78d69j0VrwctnjuGPvM8fQ5iNxQ==</latexit> <latexit sha1_base64="uGkhqy/YuhTKr1EIG2B45HDVWx0=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHivYD2qXMptk2NMkuSVYopT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNU2SacoaNBGJbkdomOCKNSy3grVTzVBGgrWi0e2s3npi2vBEPdpxykKJA8VjTtE66wF7sleu+FV/LrIKQQ4VyFXvlb+6/YRmkilLBRrTCfzUhhPUllPBpqVuZliKdIQD1nGoUDITTuarTsmZc/okTrR7ypK5+3tigtKYsYxcp0Q7NMu1mflfrZPZ+DqccJVmlim6+CjOBLEJmd1N+lwzasXYAVLN3a6EDlEjtS6dkgshWD55FZoX1cDx/WWldpPHUYQTOIVzCOAKanAHdWgAhQE8wyu8ecJ78d69j0VrwctnjuGPvM8fQ5iNxQ==</latexit> b P(yi > rk) = s ✓ m X j wjaj + bk ◆ <latexit sha1_base64="ODmb6Tbw4kN7qLYf/45mjVP376E=">AAACJXicbZDLSsNAFIYnXmu9RV26GSxCi1ASEXShUnTjsoK9QFPDZDppp51JwszEUkJfxo2v4saFRQRXvorTNAttPXDg4//PYeb8XsSoVJb1ZSwtr6yurec28ptb2zu75t5+XYaxwKSGQxaKpockYTQgNUUVI81IEMQ9Rhre4HbqN56IkDQMHtQoIm2OugH1KUZKS6556Qxph/SQSqrj4sil8BoKd1CCV1A6Hu12i46Mudt/5HDo9iHSfQI9d5B6JdcsWGUrLbgIdgYFkFXVNSdOJ8QxJ4HCDEnZsq1ItRMkFMWMjPNOLEmE8AB1SUtjgDiR7SS9cgyPtdKBfih0Bwqm6u+NBHEpR9zTkxypnpz3puJ/XitW/kU7oUEUKxLg2UN+zKAK4TQy2KGCYMVGGhAWVP8V4h4SCCsdbF6HYM+fvAj107Kt+f6sULnJ4siBQ3AEisAG56AC7kAV1AAGz+AVvIOJ8WK8GR/G52x0ych2DsCfMr5/AMaYo4o=</latexit> <latexit sha1_base64="ODmb6Tbw4kN7qLYf/45mjVP376E=">AAACJXicbZDLSsNAFIYnXmu9RV26GSxCi1ASEXShUnTjsoK9QFPDZDppp51JwszEUkJfxo2v4saFRQRXvorTNAttPXDg4//PYeb8XsSoVJb1ZSwtr6yurec28ptb2zu75t5+XYaxwKSGQxaKpockYTQgNUUVI81IEMQ9Rhre4HbqN56IkDQMHtQoIm2OugH1KUZKS6556Qxph/SQSqrj4sil8BoKd1CCV1A6Hu12i46Mudt/5HDo9iHSfQI9d5B6JdcsWGUrLbgIdgYFkFXVNSdOJ8QxJ4HCDEnZsq1ItRMkFMWMjPNOLEmE8AB1SUtjgDiR7SS9cgyPtdKBfih0Bwqm6u+NBHEpR9zTkxypnpz3puJ/XitW/kU7oUEUKxLg2UN+zKAK4TQy2KGCYMVGGhAWVP8V4h4SCCsdbF6HYM+fvAj107Kt+f6sULnJ4siBQ3AEisAG56AC7kAV1AAGz+AVvIOJ8WK8GR/G52x0ych2DsCfMr5/AMaYo4o=</latexit> <latexit sha1_base64="ODmb6Tbw4kN7qLYf/45mjVP376E=">AAACJXicbZDLSsNAFIYnXmu9RV26GSxCi1ASEXShUnTjsoK9QFPDZDppp51JwszEUkJfxo2v4saFRQRXvorTNAttPXDg4//PYeb8XsSoVJb1ZSwtr6yurec28ptb2zu75t5+XYaxwKSGQxaKpockYTQgNUUVI81IEMQ9Rhre4HbqN56IkDQMHtQoIm2OugH1KUZKS6556Qxph/SQSqrj4sil8BoKd1CCV1A6Hu12i46Mudt/5HDo9iHSfQI9d5B6JdcsWGUrLbgIdgYFkFXVNSdOJ8QxJ4HCDEnZsq1ItRMkFMWMjPNOLEmE8AB1SUtjgDiR7SS9cgyPtdKBfih0Bwqm6u+NBHEpR9zTkxypnpz3puJ/XitW/kU7oUEUKxLg2UN+zKAK4TQy2KGCYMVGGhAWVP8V4h4SCCsdbF6HYM+fvAj107Kt+f6sULnJ4siBQ3AEisAG56AC7kAV1AAGz+AVvIOJ8WK8GR/G52x0ych2DsCfMr5/AMaYo4o=</latexit> <latexit sha1_base64="ODmb6Tbw4kN7qLYf/45mjVP376E=">AAACJXicbZDLSsNAFIYnXmu9RV26GSxCi1ASEXShUnTjsoK9QFPDZDppp51JwszEUkJfxo2v4saFRQRXvorTNAttPXDg4//PYeb8XsSoVJb1ZSwtr6yurec28ptb2zu75t5+XYaxwKSGQxaKpockYTQgNUUVI81IEMQ9Rhre4HbqN56IkDQMHtQoIm2OugH1KUZKS6556Qxph/SQSqrj4sil8BoKd1CCV1A6Hu12i46Mudt/5HDo9iHSfQI9d5B6JdcsWGUrLbgIdgYFkFXVNSdOJ8QxJ4HCDEnZsq1ItRMkFMWMjPNOLEmE8AB1SUtjgDiR7SS9cgyPtdKBfih0Bwqm6u+NBHEpR9zTkxypnpz3puJ/XitW/kU7oUEUKxLg2UN+zKAK4TQy2KGCYMVGGhAWVP8V4h4SCCsdbF6HYM+fvAj107Kt+f6sULnJ4siBQ3AEisAG56AC7kAV1AAGz+AVvIOJ8WK8GR/G52x0ych2DsCfMr5/AMaYo4o=</latexit> Age label [30] <latexit sha1_base64="M7vmw7VbJIUf0IZQmzGANVHtQBA=">AAAB63icbZDLSsNAFIZP6q3WW9Wlm8EiuCqJCrosunFZwV4gDWUynbRDZyZhZiKU0Fdw40IRt76QO9/GSZqFtv4w8PGfc5hz/jDhTBvX/XYqa+sbm1vV7drO7t7+Qf3wqKvjVBHaITGPVT/EmnImaccww2k/URSLkNNeOL3L670nqjSL5aOZJTQQeCxZxAg2ueVfusGw3nCbbiG0Cl4JDSjVHta/BqOYpIJKQzjW2vfcxAQZVoYRTue1QappgskUj6lvUWJBdZAVu87RmXVGKIqVfdKgwv09kWGh9UyEtlNgM9HLtdz8r+anJroJMiaT1FBJFh9FKUcmRvnhaMQUJYbPLGCimN0VkQlWmBgbT82G4C2fvArdi6Zn+eGq0bot46jCCZzCOXhwDS24hzZ0gMAEnuEV3hzhvDjvzseiteKUM8fwR87nD02+jb0=</latexit> <latexit sha1_base64="M7vmw7VbJIUf0IZQmzGANVHtQBA=">AAAB63icbZDLSsNAFIZP6q3WW9Wlm8EiuCqJCrosunFZwV4gDWUynbRDZyZhZiKU0Fdw40IRt76QO9/GSZqFtv4w8PGfc5hz/jDhTBvX/XYqa+sbm1vV7drO7t7+Qf3wqKvjVBHaITGPVT/EmnImaccww2k/URSLkNNeOL3L670nqjSL5aOZJTQQeCxZxAg2ueVfusGw3nCbbiG0Cl4JDSjVHta/BqOYpIJKQzjW2vfcxAQZVoYRTue1QappgskUj6lvUWJBdZAVu87RmXVGKIqVfdKgwv09kWGh9UyEtlNgM9HLtdz8r+anJroJMiaT1FBJFh9FKUcmRvnhaMQUJYbPLGCimN0VkQlWmBgbT82G4C2fvArdi6Zn+eGq0bot46jCCZzCOXhwDS24hzZ0gMAEnuEV3hzhvDjvzseiteKUM8fwR87nD02+jb0=</latexit> <latexit sha1_base64="M7vmw7VbJIUf0IZQmzGANVHtQBA=">AAAB63icbZDLSsNAFIZP6q3WW9Wlm8EiuCqJCrosunFZwV4gDWUynbRDZyZhZiKU0Fdw40IRt76QO9/GSZqFtv4w8PGfc5hz/jDhTBvX/XYqa+sbm1vV7drO7t7+Qf3wqKvjVBHaITGPVT/EmnImaccww2k/URSLkNNeOL3L670nqjSL5aOZJTQQeCxZxAg2ueVfusGw3nCbbiG0Cl4JDSjVHta/BqOYpIJKQzjW2vfcxAQZVoYRTue1QappgskUj6lvUWJBdZAVu87RmXVGKIqVfdKgwv09kWGh9UyEtlNgM9HLtdz8r+anJroJMiaT1FBJFh9FKUcmRvnhaMQUJYbPLGCimN0VkQlWmBgbT82G4C2fvArdi6Zn+eGq0bot46jCCZzCOXhwDS24hzZ0gMAEnuEV3hzhvDjvzseiteKUM8fwR87nD02+jb0=</latexit> <latexit sha1_base64="M7vmw7VbJIUf0IZQmzGANVHtQBA=">AAAB63icbZDLSsNAFIZP6q3WW9Wlm8EiuCqJCrosunFZwV4gDWUynbRDZyZhZiKU0Fdw40IRt76QO9/GSZqFtv4w8PGfc5hz/jDhTBvX/XYqa+sbm1vV7drO7t7+Qf3wqKvjVBHaITGPVT/EmnImaccww2k/URSLkNNeOL3L670nqjSL5aOZJTQQeCxZxAg2ueVfusGw3nCbbiG0Cl4JDSjVHta/BqOYpIJKQzjW2vfcxAQZVoYRTue1QappgskUj6lvUWJBdZAVu87RmXVGKIqVfdKgwv09kWGh9UyEtlNgM9HLtdz8r+anJroJMiaT1FBJFh9FKUcmRvnhaMQUJYbPLGCimN0VkQlWmBgbT82G4C2fvArdi6Zn+eGq0bot46jCCZzCOXhwDS24hzZ0gMAEnuEV3hzhvDjvzseiteKUM8fwR87nD02+jb0=</latexit> 2 6 6 6 6 6 4 1 1 . . . 0 0 3 7 7 7 7 7 5 2 ZK 1 2 <latexit sha1_base64="/XCD8nf7cWvcS8D4qcb5KAZy6ww=">AAACNXicbZBNSwMxEIazflu/qh69BIvgRdkVQY9FL4IeFKwtNrUk2WkNZrNLkhXLsn/Ki//Dkx48KOLVv2C2LaLWgYEn78yQmZclUhjr+8/e2PjE5NT0zGxpbn5hcam8vHJh4lRzqPFYxrrBqAEpFNSssBIaiQYaMQl1dnNY1Ou3oI2I1bntJdCKaFeJjuDUOqldPiEMukJlLKJWi7u8FBDST3IbxtY48IvEBFT43YSJUJi4xzVj2WXe3rnKjreCvNQuV/xtvx94FIIhVNAwTtvlRxLGPI1AWS6pMc3AT2wro9oKLiEvkdRAQvkN7ULToaIRmFbWvzrHG04JcSfWLpXFffXnREYjY3oRc53FquZvrRD/qzVT29lvZUIlqQXFBx91UoltjAsLcSg0cCt7DijXwu2K+TXVlFtndGFC8PfkUbjY2Q4cn+1WqgdDO2bQGlpHmyhAe6iKjtApqiGO7tETekVv3oP34r17H4PWMW84s4p+hff5BaWDqh4=</latexit> <latexit sha1_base64="/XCD8nf7cWvcS8D4qcb5KAZy6ww=">AAACNXicbZBNSwMxEIazflu/qh69BIvgRdkVQY9FL4IeFKwtNrUk2WkNZrNLkhXLsn/Ki//Dkx48KOLVv2C2LaLWgYEn78yQmZclUhjr+8/e2PjE5NT0zGxpbn5hcam8vHJh4lRzqPFYxrrBqAEpFNSssBIaiQYaMQl1dnNY1Ou3oI2I1bntJdCKaFeJjuDUOqldPiEMukJlLKJWi7u8FBDST3IbxtY48IvEBFT43YSJUJi4xzVj2WXe3rnKjreCvNQuV/xtvx94FIIhVNAwTtvlRxLGPI1AWS6pMc3AT2wro9oKLiEvkdRAQvkN7ULToaIRmFbWvzrHG04JcSfWLpXFffXnREYjY3oRc53FquZvrRD/qzVT29lvZUIlqQXFBx91UoltjAsLcSg0cCt7DijXwu2K+TXVlFtndGFC8PfkUbjY2Q4cn+1WqgdDO2bQGlpHmyhAe6iKjtApqiGO7tETekVv3oP34r17H4PWMW84s4p+hff5BaWDqh4=</latexit> <latexit sha1_base64="/XCD8nf7cWvcS8D4qcb5KAZy6ww=">AAACNXicbZBNSwMxEIazflu/qh69BIvgRdkVQY9FL4IeFKwtNrUk2WkNZrNLkhXLsn/Ki//Dkx48KOLVv2C2LaLWgYEn78yQmZclUhjr+8/e2PjE5NT0zGxpbn5hcam8vHJh4lRzqPFYxrrBqAEpFNSssBIaiQYaMQl1dnNY1Ou3oI2I1bntJdCKaFeJjuDUOqldPiEMukJlLKJWi7u8FBDST3IbxtY48IvEBFT43YSJUJi4xzVj2WXe3rnKjreCvNQuV/xtvx94FIIhVNAwTtvlRxLGPI1AWS6pMc3AT2wro9oKLiEvkdRAQvkN7ULToaIRmFbWvzrHG04JcSfWLpXFffXnREYjY3oRc53FquZvrRD/qzVT29lvZUIlqQXFBx91UoltjAsLcSg0cCt7DijXwu2K+TXVlFtndGFC8PfkUbjY2Q4cn+1WqgdDO2bQGlpHmyhAe6iKjtApqiGO7tETekVv3oP34r17H4PWMW84s4p+hff5BaWDqh4=</latexit> <latexit sha1_base64="/XCD8nf7cWvcS8D4qcb5KAZy6ww=">AAACNXicbZBNSwMxEIazflu/qh69BIvgRdkVQY9FL4IeFKwtNrUk2WkNZrNLkhXLsn/Ki//Dkx48KOLVv2C2LaLWgYEn78yQmZclUhjr+8/e2PjE5NT0zGxpbn5hcam8vHJh4lRzqPFYxrrBqAEpFNSssBIaiQYaMQl1dnNY1Ou3oI2I1bntJdCKaFeJjuDUOqldPiEMukJlLKJWi7u8FBDST3IbxtY48IvEBFT43YSJUJi4xzVj2WXe3rnKjreCvNQuV/xtvx94FIIhVNAwTtvlRxLGPI1AWS6pMc3AT2wro9oKLiEvkdRAQvkN7ULToaIRmFbWvzrHG04JcSfWLpXFffXnREYjY3oRc53FquZvrRD/qzVT29lvZUIlqQXFBx91UoltjAsLcSg0cCt7DijXwu2K+TXVlFtndGFC8PfkUbjY2Q4cn+1WqgdDO2bQGlpHmyhAe6iKjtApqiGO7tETekVv3oP34r17H4PWMW84s4p+hff5BaWDqh4=</latexit> Extended label { <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> Label extension during training Consistent Rank Logits (CORAL) for Ordinal Regression 
 with Convolutional Neural Networks Framework
 Wenzhi Cao, Vahid Mirjalili, Sebastian Raschka. Rank-consistent Ordinal Regression for Neural Networks. arXiv:1901.07884v3. https://arxiv.org/abs/1901.07884v3
  14. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    14 h (xi) = rq q = 1 + PK 1 k=1 fk (xi) <latexit sha1_base64="ITmHci+T0hZhOMQSqgy2/H4whqs=">AAACZnicfVHPaxQxFM6Mv9pV69oiHrwEF6EiLjNtQS8LRS+Clxa6bWGzDpnsm92wmcw0eSMuIf+kN89e+mc0s52DbaWPBL73vZ/5ktdKWkySP1H84OGjx082NntPnz3fetF/uX1qq8YIGItKVeY85xaU1DBGiQrOawO8zBWc5cuvbfzsJxgrK32CqxqmJZ9rWUjBMVBZ37Mc5lI7bgxfeae8WzAFBe6ykuMiL9wvnznpmZHzBb4fmcxdeE8Za4+7GKUfmG3KzC1Hqf/hvn9MPS2C5+/p4RnoWTcv6w+SYbI2ehekHRiQzo6y/m82q0RTgkahuLWTNKlxGrqhFAp8jzUWai6WfA6TADUvwU7dWiZP3wVmRovKhKuRrtl/KxwvrV2VechsF7e3Yy35v9ikweLz1EldNwhaXA8qGkWxoq3mdCYNCFSrALgwMuxKxYIbLjD8TC+IkN5+8l1wujdM94d7xweDwy+dHBvkDXlLdklKPpFD8o0ckTER5G+0GW1HO9FlvBW/il9fp8ZRV7NDblhMrwAHtLuP</latexit> fk (xi) = 1 n b P ⇣ y(k) i = 1 ⌘ > 0.5 o <latexit sha1_base64="tU44YCrg99206DC81miT73VzELE=">AAACQ3icbVC7ahtBFJ11/FCU2JHj0s1iEZAbsWsnxE2CiJuUClgPrFWW2dFdadDsg5m7ccSw/5YmP5DOP+AmhUNwa/Dso/DrwMDhnHO5c0+QCq7QcS6ttRfrG5tbjZfNV6+3d960dt8OVZJJBgOWiESOA6pA8BgGyFHAOJVAo0DAKFieFv7oB0jFk/gMVylMIzqPecgZRSP5rfPQ18vcExBix4soLoJQ/8x9zXNP8vkCDz+5pelp74LPYEFR9+v4qkh9153lYW5CVfqz0/1QUS/3W22n65SwnxK3Jm1So++3/nizhGURxMgEVWriOilONZXImYC86WUKUsqWdA4TQ2MagZrqsoPcfmeUmR0m0rwY7VK9P6FppNQqCkyyOFM99grxOW+SYXgy1TxOM4SYVYvCTNiY2EWh9oxLYChWhlAmufmrzRZUUoam9qYpwX188lMyPOq6x92jb+/bvS91HQ2yTw5Ih7jkI+mRr6RPBoSRX+SKXJN/1m/rr/Xfuqmia1Y9s0cewLq9AxjRsrA=</latexit> . . . Weight sharing across k-1 tasks . . . b1 <latexit sha1_base64="oxRwFKiWcKO5u9w5ICndUHjxWWI=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorYew7/fdqlfz5iKr4BdQhUKNvvvVGyQsi7lCJqkxXd9LMcipRsEkn1Z6meEpZWM65F2LisbcBPl81Sk5s86ARIm2TyGZu78nchobM4lD2xlTHJnl2sz8r9bNMLoOcqHSDLlii4+iTBJMyOxuMhCaM5QTC5RpYXclbEQ1ZWjTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+yPn8AeofjYo=</latexit> <latexit sha1_base64="oxRwFKiWcKO5u9w5ICndUHjxWWI=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorYew7/fdqlfz5iKr4BdQhUKNvvvVGyQsi7lCJqkxXd9LMcipRsEkn1Z6meEpZWM65F2LisbcBPl81Sk5s86ARIm2TyGZu78nchobM4lD2xlTHJnl2sz8r9bNMLoOcqHSDLlii4+iTBJMyOxuMhCaM5QTC5RpYXclbEQ1ZWjTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+yPn8AeofjYo=</latexit> <latexit sha1_base64="oxRwFKiWcKO5u9w5ICndUHjxWWI=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorYew7/fdqlfz5iKr4BdQhUKNvvvVGyQsi7lCJqkxXd9LMcipRsEkn1Z6meEpZWM65F2LisbcBPl81Sk5s86ARIm2TyGZu78nchobM4lD2xlTHJnl2sz8r9bNMLoOcqHSDLlii4+iTBJMyOxuMhCaM5QTC5RpYXclbEQ1ZWjTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+yPn8AeofjYo=</latexit> <latexit sha1_base64="oxRwFKiWcKO5u9w5ICndUHjxWWI=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorYew7/fdqlfz5iKr4BdQhUKNvvvVGyQsi7lCJqkxXd9LMcipRsEkn1Z6meEpZWM65F2LisbcBPl81Sk5s86ARIm2TyGZu78nchobM4lD2xlTHJnl2sz8r9bNMLoOcqHSDLlii4+iTBJMyOxuMhCaM5QTC5RpYXclbEQ1ZWjTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+yPn8AeofjYo=</latexit> b2 <latexit sha1_base64="KmwIREzjRQ4yYecphZP2rZMfohI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrYdgUBuUK27VXYisg5dDBXI1B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYsShqh9rPFqjNyYZ0hCWNlnzRk4f6eyGik9TQKbGdEzViv1ubmf7VeasJrP+MySQ1KtvwoTAUxMZnfTYZcITNiaoEyxe2uhI2poszYdEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hj5zPH+ujjYs=</latexit> <latexit sha1_base64="KmwIREzjRQ4yYecphZP2rZMfohI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrYdgUBuUK27VXYisg5dDBXI1B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYsShqh9rPFqjNyYZ0hCWNlnzRk4f6eyGik9TQKbGdEzViv1ubmf7VeasJrP+MySQ1KtvwoTAUxMZnfTYZcITNiaoEyxe2uhI2poszYdEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hj5zPH+ujjYs=</latexit> <latexit sha1_base64="KmwIREzjRQ4yYecphZP2rZMfohI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrYdgUBuUK27VXYisg5dDBXI1B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYsShqh9rPFqjNyYZ0hCWNlnzRk4f6eyGik9TQKbGdEzViv1ubmf7VeasJrP+MySQ1KtvwoTAUxMZnfTYZcITNiaoEyxe2uhI2poszYdEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hj5zPH+ujjYs=</latexit> <latexit sha1_base64="KmwIREzjRQ4yYecphZP2rZMfohI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrYdgUBuUK27VXYisg5dDBXI1B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYsShqh9rPFqjNyYZ0hCWNlnzRk4f6eyGik9TQKbGdEzViv1ubmf7VeasJrP+MySQ1KtvwoTAUxMZnfTYZcITNiaoEyxe2uhI2poszYdEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hj5zPH+ujjYs=</latexit> w1 <latexit sha1_base64="ozSIzVA/SGXegmac4XRXthOpvw0=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjRfsBbSib7aZdutmE3YlSQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9m9fYj10bE6gEnCfcjOlQiFIyite6f+l6/XHGr7lxkFbwcKpCr0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXoqIRN342X3VKzqwzIGGs7VNI5u7viYxGxkyiwHZGFEdmuTYz/6t1Uwyv/EyoJEWu2OKjMJUEYzK7mwyE5gzlxAJlWthdCRtRTRnadEo2BG/55FVoXVQ9y3eXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzmfPwosjZ8=</latexit> <latexit sha1_base64="ozSIzVA/SGXegmac4XRXthOpvw0=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjRfsBbSib7aZdutmE3YlSQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9m9fYj10bE6gEnCfcjOlQiFIyite6f+l6/XHGr7lxkFbwcKpCr0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXoqIRN342X3VKzqwzIGGs7VNI5u7viYxGxkyiwHZGFEdmuTYz/6t1Uwyv/EyoJEWu2OKjMJUEYzK7mwyE5gzlxAJlWthdCRtRTRnadEo2BG/55FVoXVQ9y3eXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzmfPwosjZ8=</latexit> <latexit sha1_base64="ozSIzVA/SGXegmac4XRXthOpvw0=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjRfsBbSib7aZdutmE3YlSQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9m9fYj10bE6gEnCfcjOlQiFIyite6f+l6/XHGr7lxkFbwcKpCr0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXoqIRN342X3VKzqwzIGGs7VNI5u7viYxGxkyiwHZGFEdmuTYz/6t1Uwyv/EyoJEWu2OKjMJUEYzK7mwyE5gzlxAJlWthdCRtRTRnadEo2BG/55FVoXVQ9y3eXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzmfPwosjZ8=</latexit> <latexit sha1_base64="ozSIzVA/SGXegmac4XRXthOpvw0=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjRfsBbSib7aZdutmE3YlSQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9m9fYj10bE6gEnCfcjOlQiFIyite6f+l6/XHGr7lxkFbwcKpCr0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXoqIRN342X3VKzqwzIGGs7VNI5u7viYxGxkyiwHZGFEdmuTYz/6t1Uwyv/EyoJEWu2OKjMJUEYzK7mwyE5gzlxAJlWthdCRtRTRnadEo2BG/55FVoXVQ9y3eXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzmfPwosjZ8=</latexit> w2 <latexit sha1_base64="sAAe226MpFncoK5AcSpzzUnkA9I=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix6MVjRfsBbSib7aZdutmE3YlSQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9m9fYj10bE6gEnCfcjOlQiFIyite6f+rV+ueJW3bnIKng5VCBXo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKuRUUjbvxsvuqUnFlnQMJY26eQzN3fExmNjJlEge2MKI7Mcm1m/lfrphhe+ZlQSYpcscVHYSoJxmR2NxkIzRnKiQXKtLC7EjaimjK06ZRsCN7yyavQqlU9y3cXlfp1HkcRTuAUzsGDS6jDLTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3I+fwALsI2g</latexit> <latexit sha1_base64="sAAe226MpFncoK5AcSpzzUnkA9I=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix6MVjRfsBbSib7aZdutmE3YlSQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9m9fYj10bE6gEnCfcjOlQiFIyite6f+rV+ueJW3bnIKng5VCBXo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKuRUUjbvxsvuqUnFlnQMJY26eQzN3fExmNjJlEge2MKI7Mcm1m/lfrphhe+ZlQSYpcscVHYSoJxmR2NxkIzRnKiQXKtLC7EjaimjK06ZRsCN7yyavQqlU9y3cXlfp1HkcRTuAUzsGDS6jDLTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3I+fwALsI2g</latexit> <latexit sha1_base64="sAAe226MpFncoK5AcSpzzUnkA9I=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix6MVjRfsBbSib7aZdutmE3YlSQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9m9fYj10bE6gEnCfcjOlQiFIyite6f+rV+ueJW3bnIKng5VCBXo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKuRUUjbvxsvuqUnFlnQMJY26eQzN3fExmNjJlEge2MKI7Mcm1m/lfrphhe+ZlQSYpcscVHYSoJxmR2NxkIzRnKiQXKtLC7EjaimjK06ZRsCN7yyavQqlU9y3cXlfp1HkcRTuAUzsGDS6jDLTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3I+fwALsI2g</latexit> <latexit sha1_base64="sAAe226MpFncoK5AcSpzzUnkA9I=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix6MVjRfsBbSib7aZdutmE3YlSQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9m9fYj10bE6gEnCfcjOlQiFIyite6f+rV+ueJW3bnIKng5VCBXo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKuRUUjbvxsvuqUnFlnQMJY26eQzN3fExmNjJlEge2MKI7Mcm1m/lfrphhe+ZlQSYpcscVHYSoJxmR2NxkIzRnKiQXKtLC7EjaimjK06ZRsCN7yyavQqlU9y3cXlfp1HkcRTuAUzsGDS6jDLTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3I+fwALsI2g</latexit> . . . 7x7 AvgPool stride=1 wm <latexit sha1_base64="3SltFZgdSbEccduFdJMJ4sVJM+s=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHirYW2qVk07QNTbJLMquUpT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wsrq2vlHcLG1t7+zulfcPmjZODeMNFsvYtCJquRSaN1Cg5K3EcKoiyR+i0fW0/vDIjRWxvsdxwkNFB1r0BaPorLunruqWK37Vn4ksQ5BDBXLVu+WvTi9mqeIamaTWtgM/wTCjBgWTfFLqpJYnlI3ogLcdaqq4DbPZqhNy4pwe6cfGPY1k5v6eyKiydqwi16koDu1ibWr+V2un2L8MM6GTFLlm84/6qSQYk+ndpCcMZyjHDigzwu1K2JAaytClU3IhBIsnL0PzrBo4vj2v1K7yOIpwBMdwCgFcQA1uoA4NYDCAZ3iFN096L9679zFvLXj5zCH8kff5A2Ucjds=</latexit> <latexit sha1_base64="3SltFZgdSbEccduFdJMJ4sVJM+s=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHirYW2qVk07QNTbJLMquUpT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wsrq2vlHcLG1t7+zulfcPmjZODeMNFsvYtCJquRSaN1Cg5K3EcKoiyR+i0fW0/vDIjRWxvsdxwkNFB1r0BaPorLunruqWK37Vn4ksQ5BDBXLVu+WvTi9mqeIamaTWtgM/wTCjBgWTfFLqpJYnlI3ogLcdaqq4DbPZqhNy4pwe6cfGPY1k5v6eyKiydqwi16koDu1ibWr+V2un2L8MM6GTFLlm84/6qSQYk+ndpCcMZyjHDigzwu1K2JAaytClU3IhBIsnL0PzrBo4vj2v1K7yOIpwBMdwCgFcQA1uoA4NYDCAZ3iFN096L9679zFvLXj5zCH8kff5A2Ucjds=</latexit> <latexit sha1_base64="3SltFZgdSbEccduFdJMJ4sVJM+s=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHirYW2qVk07QNTbJLMquUpT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wsrq2vlHcLG1t7+zulfcPmjZODeMNFsvYtCJquRSaN1Cg5K3EcKoiyR+i0fW0/vDIjRWxvsdxwkNFB1r0BaPorLunruqWK37Vn4ksQ5BDBXLVu+WvTi9mqeIamaTWtgM/wTCjBgWTfFLqpJYnlI3ogLcdaqq4DbPZqhNy4pwe6cfGPY1k5v6eyKiydqwi16koDu1ibWr+V2un2L8MM6GTFLlm84/6qSQYk+ndpCcMZyjHDigzwu1K2JAaytClU3IhBIsnL0PzrBo4vj2v1K7yOIpwBMdwCgFcQA1uoA4NYDCAZ3iFN096L9679zFvLXj5zCH8kff5A2Ucjds=</latexit> <latexit sha1_base64="3SltFZgdSbEccduFdJMJ4sVJM+s=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHirYW2qVk07QNTbJLMquUpT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wsrq2vlHcLG1t7+zulfcPmjZODeMNFsvYtCJquRSaN1Cg5K3EcKoiyR+i0fW0/vDIjRWxvsdxwkNFB1r0BaPorLunruqWK37Vn4ksQ5BDBXLVu+WvTi9mqeIamaTWtgM/wTCjBgWTfFLqpJYnlI3ogLcdaqq4DbPZqhNy4pwe6cfGPY1k5v6eyKiydqwi16koDu1ibWr+V2un2L8MM6GTFLlm84/6qSQYk+ndpCcMZyjHDigzwu1K2JAaytClU3IhBIsnL0PzrBo4vj2v1K7yOIpwBMdwCgFcQA1uoA4NYDCAZ3iFN096L9679zFvLXj5zCH8kff5A2Ucjds=</latexit> { <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> K 1 <latexit sha1_base64="r9EyNDc4ZkK0RbMq+OXc0Let6lU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8GJJRNBj0YvgpaL9gDaUzXbSLt1swu5GKKE/wYsHRbz6i7z5b9y2OWjrCwsP78ywM2+QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwehmWm89odI8lo9mnKAf0YHkIWfUWOvh7szrlStu1Z2JLIOXQwVy1Xvlr24/ZmmE0jBBte54bmL8jCrDmcBJqZtqTCgb0QF2LEoaofaz2aoTcmKdPgljZZ80ZOb+nshopPU4CmxnRM1QL9am5n+1TmrCKz/jMkkNSjb/KEwFMTGZ3k36XCEzYmyBMsXtroQNqaLM2HRKNgRv8eRlaJ5XPcv3F5XadR5HEY7gGE7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9yPn8AexuNQQ==</latexit> <latexit sha1_base64="r9EyNDc4ZkK0RbMq+OXc0Let6lU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8GJJRNBj0YvgpaL9gDaUzXbSLt1swu5GKKE/wYsHRbz6i7z5b9y2OWjrCwsP78ywM2+QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwehmWm89odI8lo9mnKAf0YHkIWfUWOvh7szrlStu1Z2JLIOXQwVy1Xvlr24/ZmmE0jBBte54bmL8jCrDmcBJqZtqTCgb0QF2LEoaofaz2aoTcmKdPgljZZ80ZOb+nshopPU4CmxnRM1QL9am5n+1TmrCKz/jMkkNSjb/KEwFMTGZ3k36XCEzYmyBMsXtroQNqaLM2HRKNgRv8eRlaJ5XPcv3F5XadR5HEY7gGE7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9yPn8AexuNQQ==</latexit> <latexit sha1_base64="r9EyNDc4ZkK0RbMq+OXc0Let6lU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8GJJRNBj0YvgpaL9gDaUzXbSLt1swu5GKKE/wYsHRbz6i7z5b9y2OWjrCwsP78ywM2+QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwehmWm89odI8lo9mnKAf0YHkIWfUWOvh7szrlStu1Z2JLIOXQwVy1Xvlr24/ZmmE0jBBte54bmL8jCrDmcBJqZtqTCgb0QF2LEoaofaz2aoTcmKdPgljZZ80ZOb+nshopPU4CmxnRM1QL9am5n+1TmrCKz/jMkkNSjb/KEwFMTGZ3k36XCEzYmyBMsXtroQNqaLM2HRKNgRv8eRlaJ5XPcv3F5XadR5HEY7gGE7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9yPn8AexuNQQ==</latexit> <latexit sha1_base64="r9EyNDc4ZkK0RbMq+OXc0Let6lU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8GJJRNBj0YvgpaL9gDaUzXbSLt1swu5GKKE/wYsHRbz6i7z5b9y2OWjrCwsP78ywM2+QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwehmWm89odI8lo9mnKAf0YHkIWfUWOvh7szrlStu1Z2JLIOXQwVy1Xvlr24/ZmmE0jBBte54bmL8jCrDmcBJqZtqTCgb0QF2LEoaofaz2aoTcmKdPgljZZ80ZOb+nshopPU4CmxnRM1QL9am5n+1TmrCKz/jMkkNSjb/KEwFMTGZ3k36XCEzYmyBMsXtroQNqaLM2HRKNgRv8eRlaJ5XPcv3F5XadR5HEY7gGE7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9yPn8AexuNQQ==</latexit> bK 1 <latexit sha1_base64="LwOEvZG6tsrLM9p/zFnxWW88ucU=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8GJJpKDHohfBSwX7AW0om+2mXbrZhN2JUEJ/hBcPinj193jz37htc9DWFxYe3plhZ94gkcKg6347hbX1jc2t4nZpZ3dv/6B8eNQycaoZb7JYxroTUMOlULyJAiXvJJrTKJC8HYxvZ/X2E9dGxOoRJwn3IzpUIhSMorXaQT+7v/Cm/XLFrbpzkVXwcqhArka//NUbxCyNuEImqTFdz03Qz6hGwSSflnqp4QllYzrkXYuKRtz42XzdKTmzzoCEsbZPIZm7vycyGhkziQLbGVEcmeXazPyv1k0xvPYzoZIUuWKLj8JUEozJ7HYyEJozlBMLlGlhdyVsRDVlaBMq2RC85ZNXoXVZ9Sw/1Cr1mzyOIpzAKZyDB1dQhztoQBMYjOEZXuHNSZwX5935WLQWnHzmGP7I+fwBshSPIg==</latexit> <latexit sha1_base64="LwOEvZG6tsrLM9p/zFnxWW88ucU=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8GJJpKDHohfBSwX7AW0om+2mXbrZhN2JUEJ/hBcPinj193jz37htc9DWFxYe3plhZ94gkcKg6347hbX1jc2t4nZpZ3dv/6B8eNQycaoZb7JYxroTUMOlULyJAiXvJJrTKJC8HYxvZ/X2E9dGxOoRJwn3IzpUIhSMorXaQT+7v/Cm/XLFrbpzkVXwcqhArka//NUbxCyNuEImqTFdz03Qz6hGwSSflnqp4QllYzrkXYuKRtz42XzdKTmzzoCEsbZPIZm7vycyGhkziQLbGVEcmeXazPyv1k0xvPYzoZIUuWKLj8JUEozJ7HYyEJozlBMLlGlhdyVsRDVlaBMq2RC85ZNXoXVZ9Sw/1Cr1mzyOIpzAKZyDB1dQhztoQBMYjOEZXuHNSZwX5935WLQWnHzmGP7I+fwBshSPIg==</latexit> <latexit sha1_base64="LwOEvZG6tsrLM9p/zFnxWW88ucU=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8GJJpKDHohfBSwX7AW0om+2mXbrZhN2JUEJ/hBcPinj193jz37htc9DWFxYe3plhZ94gkcKg6347hbX1jc2t4nZpZ3dv/6B8eNQycaoZb7JYxroTUMOlULyJAiXvJJrTKJC8HYxvZ/X2E9dGxOoRJwn3IzpUIhSMorXaQT+7v/Cm/XLFrbpzkVXwcqhArka//NUbxCyNuEImqTFdz03Qz6hGwSSflnqp4QllYzrkXYuKRtz42XzdKTmzzoCEsbZPIZm7vycyGhkziQLbGVEcmeXazPyv1k0xvPYzoZIUuWKLj8JUEozJ7HYyEJozlBMLlGlhdyVsRDVlaBMq2RC85ZNXoXVZ9Sw/1Cr1mzyOIpzAKZyDB1dQhztoQBMYjOEZXuHNSZwX5935WLQWnHzmGP7I+fwBshSPIg==</latexit> <latexit sha1_base64="LwOEvZG6tsrLM9p/zFnxWW88ucU=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8GJJpKDHohfBSwX7AW0om+2mXbrZhN2JUEJ/hBcPinj193jz37htc9DWFxYe3plhZ94gkcKg6347hbX1jc2t4nZpZ3dv/6B8eNQycaoZb7JYxroTUMOlULyJAiXvJJrTKJC8HYxvZ/X2E9dGxOoRJwn3IzpUIhSMorXaQT+7v/Cm/XLFrbpzkVXwcqhArka//NUbxCyNuEImqTFdz03Qz6hGwSSflnqp4QllYzrkXYuKRtz42XzdKTmzzoCEsbZPIZm7vycyGhkziQLbGVEcmeXazPyv1k0xvPYzoZIUuWKLj8JUEozJ7HYyEJozlBMLlGlhdyVsRDVlaBMq2RC85ZNXoXVZ9Sw/1Cr1mzyOIpzAKZyDB1dQhztoQBMYjOEZXuHNSZwX5935WLQWnHzmGP7I+fwBshSPIg==</latexit> b P(yi > r1) <latexit sha1_base64="JEWZgW/c9FbzIeNeK3w5m6yuKL4=">AAAB/XicbZDLSsNAFIYn9VbrLV52boJFqJuSiKArKbpxWcFeoA1hMjlph04mYWaixFB8FTcuFHHre7jzbZy2WWjrDwMf/zmHc+b3E0alsu1vo7S0vLK6Vl6vbGxube+Yu3ttGaeCQIvELBZdH0tglENLUcWgmwjAkc+g44+uJ/XOPQhJY36nsgTcCA84DSnBSlueedB/oAEMscqb41rm0UvhOSeeWbXr9lTWIjgFVFGhpmd+9YOYpBFwRRiWsufYiXJzLBQlDMaVfiohwWSEB9DTyHEE0s2n14+tY+0EVhgL/biypu7viRxHUmaRrzsjrIZyvjYx/6v1UhVeuDnlSaqAk9miMGWWiq1JFFZABRDFMg2YCKpvtcgQC0yUDqyiQ3Dmv7wI7dO6o/n2rNq4KuIoo0N0hGrIQeeogW5QE7UQQY/oGb2iN+PJeDHejY9Za8koZvbRHxmfP9pzlM8=</latexit> <latexit sha1_base64="JEWZgW/c9FbzIeNeK3w5m6yuKL4=">AAAB/XicbZDLSsNAFIYn9VbrLV52boJFqJuSiKArKbpxWcFeoA1hMjlph04mYWaixFB8FTcuFHHre7jzbZy2WWjrDwMf/zmHc+b3E0alsu1vo7S0vLK6Vl6vbGxube+Yu3ttGaeCQIvELBZdH0tglENLUcWgmwjAkc+g44+uJ/XOPQhJY36nsgTcCA84DSnBSlueedB/oAEMscqb41rm0UvhOSeeWbXr9lTWIjgFVFGhpmd+9YOYpBFwRRiWsufYiXJzLBQlDMaVfiohwWSEB9DTyHEE0s2n14+tY+0EVhgL/biypu7viRxHUmaRrzsjrIZyvjYx/6v1UhVeuDnlSaqAk9miMGWWiq1JFFZABRDFMg2YCKpvtcgQC0yUDqyiQ3Dmv7wI7dO6o/n2rNq4KuIoo0N0hGrIQeeogW5QE7UQQY/oGb2iN+PJeDHejY9Za8koZvbRHxmfP9pzlM8=</latexit> <latexit sha1_base64="JEWZgW/c9FbzIeNeK3w5m6yuKL4=">AAAB/XicbZDLSsNAFIYn9VbrLV52boJFqJuSiKArKbpxWcFeoA1hMjlph04mYWaixFB8FTcuFHHre7jzbZy2WWjrDwMf/zmHc+b3E0alsu1vo7S0vLK6Vl6vbGxube+Yu3ttGaeCQIvELBZdH0tglENLUcWgmwjAkc+g44+uJ/XOPQhJY36nsgTcCA84DSnBSlueedB/oAEMscqb41rm0UvhOSeeWbXr9lTWIjgFVFGhpmd+9YOYpBFwRRiWsufYiXJzLBQlDMaVfiohwWSEB9DTyHEE0s2n14+tY+0EVhgL/biypu7viRxHUmaRrzsjrIZyvjYx/6v1UhVeuDnlSaqAk9miMGWWiq1JFFZABRDFMg2YCKpvtcgQC0yUDqyiQ3Dmv7wI7dO6o/n2rNq4KuIoo0N0hGrIQeeogW5QE7UQQY/oGb2iN+PJeDHejY9Za8koZvbRHxmfP9pzlM8=</latexit> <latexit sha1_base64="JEWZgW/c9FbzIeNeK3w5m6yuKL4=">AAAB/XicbZDLSsNAFIYn9VbrLV52boJFqJuSiKArKbpxWcFeoA1hMjlph04mYWaixFB8FTcuFHHre7jzbZy2WWjrDwMf/zmHc+b3E0alsu1vo7S0vLK6Vl6vbGxube+Yu3ttGaeCQIvELBZdH0tglENLUcWgmwjAkc+g44+uJ/XOPQhJY36nsgTcCA84DSnBSlueedB/oAEMscqb41rm0UvhOSeeWbXr9lTWIjgFVFGhpmd+9YOYpBFwRRiWsufYiXJzLBQlDMaVfiohwWSEB9DTyHEE0s2n14+tY+0EVhgL/biypu7viRxHUmaRrzsjrIZyvjYx/6v1UhVeuDnlSaqAk9miMGWWiq1JFFZABRDFMg2YCKpvtcgQC0yUDqyiQ3Dmv7wI7dO6o/n2rNq4KuIoo0N0hGrIQeeogW5QE7UQQY/oGb2iN+PJeDHejY9Za8koZvbRHxmfP9pzlM8=</latexit> b P(yi > r2) <latexit sha1_base64="TTPnmRaLx/eL+eApEw1jpI9oVN4=">AAAB/XicbZDLSsNAFIZPvNZ6i5edm2AR6qYkRdCVFN24rGAv0IYwmUzaoZNJmJkoMRRfxY0LRdz6Hu58G6dtFtr6w8DHf87hnPn9hFGpbPvbWFpeWV1bL22UN7e2d3bNvf22jFOBSQvHLBZdH0nCKCctRRUj3UQQFPmMdPzR9aTeuSdC0pjfqSwhboQGnIYUI6UtzzzsP9CADJHKm+Nq5tFL4dVPPbNi1+yprEVwCqhAoaZnfvWDGKcR4QozJGXPsRPl5kgoihkZl/upJAnCIzQgPY0cRUS6+fT6sXWincAKY6EfV9bU/T2Ro0jKLPJ1Z4TUUM7XJuZ/tV6qwgs3pzxJFeF4tihMmaViaxKFFVBBsGKZBoQF1bdaeIgEwkoHVtYhOPNfXoR2veZovj2rNK6KOEpwBMdQBQfOoQE30IQWYHiEZ3iFN+PJeDHejY9Z65JRzBzAHxmfP9v4lNA=</latexit> <latexit sha1_base64="TTPnmRaLx/eL+eApEw1jpI9oVN4=">AAAB/XicbZDLSsNAFIZPvNZ6i5edm2AR6qYkRdCVFN24rGAv0IYwmUzaoZNJmJkoMRRfxY0LRdz6Hu58G6dtFtr6w8DHf87hnPn9hFGpbPvbWFpeWV1bL22UN7e2d3bNvf22jFOBSQvHLBZdH0nCKCctRRUj3UQQFPmMdPzR9aTeuSdC0pjfqSwhboQGnIYUI6UtzzzsP9CADJHKm+Nq5tFL4dVPPbNi1+yprEVwCqhAoaZnfvWDGKcR4QozJGXPsRPl5kgoihkZl/upJAnCIzQgPY0cRUS6+fT6sXWincAKY6EfV9bU/T2Ro0jKLPJ1Z4TUUM7XJuZ/tV6qwgs3pzxJFeF4tihMmaViaxKFFVBBsGKZBoQF1bdaeIgEwkoHVtYhOPNfXoR2veZovj2rNK6KOEpwBMdQBQfOoQE30IQWYHiEZ3iFN+PJeDHejY9Z65JRzBzAHxmfP9v4lNA=</latexit> <latexit sha1_base64="TTPnmRaLx/eL+eApEw1jpI9oVN4=">AAAB/XicbZDLSsNAFIZPvNZ6i5edm2AR6qYkRdCVFN24rGAv0IYwmUzaoZNJmJkoMRRfxY0LRdz6Hu58G6dtFtr6w8DHf87hnPn9hFGpbPvbWFpeWV1bL22UN7e2d3bNvf22jFOBSQvHLBZdH0nCKCctRRUj3UQQFPmMdPzR9aTeuSdC0pjfqSwhboQGnIYUI6UtzzzsP9CADJHKm+Nq5tFL4dVPPbNi1+yprEVwCqhAoaZnfvWDGKcR4QozJGXPsRPl5kgoihkZl/upJAnCIzQgPY0cRUS6+fT6sXWincAKY6EfV9bU/T2Ro0jKLPJ1Z4TUUM7XJuZ/tV6qwgs3pzxJFeF4tihMmaViaxKFFVBBsGKZBoQF1bdaeIgEwkoHVtYhOPNfXoR2veZovj2rNK6KOEpwBMdQBQfOoQE30IQWYHiEZ3iFN+PJeDHejY9Z65JRzBzAHxmfP9v4lNA=</latexit> <latexit sha1_base64="TTPnmRaLx/eL+eApEw1jpI9oVN4=">AAAB/XicbZDLSsNAFIZPvNZ6i5edm2AR6qYkRdCVFN24rGAv0IYwmUzaoZNJmJkoMRRfxY0LRdz6Hu58G6dtFtr6w8DHf87hnPn9hFGpbPvbWFpeWV1bL22UN7e2d3bNvf22jFOBSQvHLBZdH0nCKCctRRUj3UQQFPmMdPzR9aTeuSdC0pjfqSwhboQGnIYUI6UtzzzsP9CADJHKm+Nq5tFL4dVPPbNi1+yprEVwCqhAoaZnfvWDGKcR4QozJGXPsRPl5kgoihkZl/upJAnCIzQgPY0cRUS6+fT6sXWincAKY6EfV9bU/T2Ro0jKLPJ1Z4TUUM7XJuZ/tV6qwgs3pzxJFeF4tihMmaViaxKFFVBBsGKZBoQF1bdaeIgEwkoHVtYhOPNfXoR2veZovj2rNK6KOEpwBMdQBQfOoQE30IQWYHiEZ3iFN+PJeDHejY9Z65JRzBzAHxmfP9v4lNA=</latexit> b P(yi > rK 1) <latexit sha1_base64="EsrSGPlu5mWGfLIJjs5E47reN0Y=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLqwJCLoSopuBDcV7AXaECaTSTt0MgkzEyWEuPFV3LhQxK1v4c63cdpmoa0/DHz85xzOnN+LGZXKsr6N0sLi0vJKebWytr6xuWVu77RllAhMWjhikeh6SBJGOWkpqhjpxoKg0GOk442uxvXOPRGSRvxOpTFxQjTgNKAYKW255l7/gfpkiFTWzGupSy+Em90c2/mRa1atujURnAe7gCoo1HTNr74f4SQkXGGGpOzZVqycDAlFMSN5pZ9IEiM8QgPS08hRSKSTTS7I4aF2fBhEQj+u4MT9PZGhUMo09HRniNRQztbG5n+1XqKCcyejPE4U4Xi6KEgYVBEcxwF9KghWLNWAsKD6rxAPkUBY6dAqOgR79uR5aJ/Ubc23p9XGZRFHGeyDA1ADNjgDDXANmqAFMHgEz+AVvBlPxovxbnxMW0tGMbML/sj4/AG94JZn</latexit> <latexit sha1_base64="EsrSGPlu5mWGfLIJjs5E47reN0Y=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLqwJCLoSopuBDcV7AXaECaTSTt0MgkzEyWEuPFV3LhQxK1v4c63cdpmoa0/DHz85xzOnN+LGZXKsr6N0sLi0vJKebWytr6xuWVu77RllAhMWjhikeh6SBJGOWkpqhjpxoKg0GOk442uxvXOPRGSRvxOpTFxQjTgNKAYKW255l7/gfpkiFTWzGupSy+Em90c2/mRa1atujURnAe7gCoo1HTNr74f4SQkXGGGpOzZVqycDAlFMSN5pZ9IEiM8QgPS08hRSKSTTS7I4aF2fBhEQj+u4MT9PZGhUMo09HRniNRQztbG5n+1XqKCcyejPE4U4Xi6KEgYVBEcxwF9KghWLNWAsKD6rxAPkUBY6dAqOgR79uR5aJ/Ubc23p9XGZRFHGeyDA1ADNjgDDXANmqAFMHgEz+AVvBlPxovxbnxMW0tGMbML/sj4/AG94JZn</latexit> <latexit sha1_base64="EsrSGPlu5mWGfLIJjs5E47reN0Y=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLqwJCLoSopuBDcV7AXaECaTSTt0MgkzEyWEuPFV3LhQxK1v4c63cdpmoa0/DHz85xzOnN+LGZXKsr6N0sLi0vJKebWytr6xuWVu77RllAhMWjhikeh6SBJGOWkpqhjpxoKg0GOk442uxvXOPRGSRvxOpTFxQjTgNKAYKW255l7/gfpkiFTWzGupSy+Em90c2/mRa1atujURnAe7gCoo1HTNr74f4SQkXGGGpOzZVqycDAlFMSN5pZ9IEiM8QgPS08hRSKSTTS7I4aF2fBhEQj+u4MT9PZGhUMo09HRniNRQztbG5n+1XqKCcyejPE4U4Xi6KEgYVBEcxwF9KghWLNWAsKD6rxAPkUBY6dAqOgR79uR5aJ/Ubc23p9XGZRFHGeyDA1ADNjgDDXANmqAFMHgEz+AVvBlPxovxbnxMW0tGMbML/sj4/AG94JZn</latexit> <latexit sha1_base64="EsrSGPlu5mWGfLIJjs5E47reN0Y=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLqwJCLoSopuBDcV7AXaECaTSTt0MgkzEyWEuPFV3LhQxK1v4c63cdpmoa0/DHz85xzOnN+LGZXKsr6N0sLi0vJKebWytr6xuWVu77RllAhMWjhikeh6SBJGOWkpqhjpxoKg0GOk442uxvXOPRGSRvxOpTFxQjTgNKAYKW255l7/gfpkiFTWzGupSy+Em90c2/mRa1atujURnAe7gCoo1HTNr74f4SQkXGGGpOzZVqycDAlFMSN5pZ9IEiM8QgPS08hRSKSTTS7I4aF2fBhEQj+u4MT9PZGhUMo09HRniNRQztbG5n+1XqKCcyejPE4U4Xi6KEgYVBEcxwF9KghWLNWAsKD6rxAPkUBY6dAqOgR79uR5aJ/Ubc23p9XGZRFHGeyDA1ADNjgDDXANmqAFMHgEz+AVvBlPxovxbnxMW0tGMbML/sj4/AG94JZn</latexit> { <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> Tasks { <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> a1 <latexit sha1_base64="i5nKWL2osYHJ2SU7NvALg/zpMfE=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTJdtMu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkU5Q1aSIS1QlRM8ElaxpuBOukimEcCtYOx7ezevuJKc0T+WgmKQtiHEoecYrGWg/Y9/tu1at5c5FV8AuoQqFG3/3qDRKaxUwaKlDrru+lJshRGU4Fm1Z6mWYp0jEOWdeixJjpIJ+vOiVn1hmQKFH2SUPm7u+JHGOtJ3FoO2M0I71cm5n/1bqZia6DnMs0M0zSxUdRJohJyOxuMuCKUSMmFpAqbncldIQKqbHpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATKAzhGV7hzRHOi/PufCxaS04xcwx/5Hz+AOiZjYk=</latexit> <latexit sha1_base64="i5nKWL2osYHJ2SU7NvALg/zpMfE=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTJdtMu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkU5Q1aSIS1QlRM8ElaxpuBOukimEcCtYOx7ezevuJKc0T+WgmKQtiHEoecYrGWg/Y9/tu1at5c5FV8AuoQqFG3/3qDRKaxUwaKlDrru+lJshRGU4Fm1Z6mWYp0jEOWdeixJjpIJ+vOiVn1hmQKFH2SUPm7u+JHGOtJ3FoO2M0I71cm5n/1bqZia6DnMs0M0zSxUdRJohJyOxuMuCKUSMmFpAqbncldIQKqbHpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATKAzhGV7hzRHOi/PufCxaS04xcwx/5Hz+AOiZjYk=</latexit> <latexit sha1_base64="i5nKWL2osYHJ2SU7NvALg/zpMfE=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTJdtMu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkU5Q1aSIS1QlRM8ElaxpuBOukimEcCtYOx7ezevuJKc0T+WgmKQtiHEoecYrGWg/Y9/tu1at5c5FV8AuoQqFG3/3qDRKaxUwaKlDrru+lJshRGU4Fm1Z6mWYp0jEOWdeixJjpIJ+vOiVn1hmQKFH2SUPm7u+JHGOtJ3FoO2M0I71cm5n/1bqZia6DnMs0M0zSxUdRJohJyOxuMuCKUSMmFpAqbncldIQKqbHpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATKAzhGV7hzRHOi/PufCxaS04xcwx/5Hz+AOiZjYk=</latexit> <latexit sha1_base64="i5nKWL2osYHJ2SU7NvALg/zpMfE=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTJdtMu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkU5Q1aSIS1QlRM8ElaxpuBOukimEcCtYOx7ezevuJKc0T+WgmKQtiHEoecYrGWg/Y9/tu1at5c5FV8AuoQqFG3/3qDRKaxUwaKlDrru+lJshRGU4Fm1Z6mWYp0jEOWdeixJjpIJ+vOiVn1hmQKFH2SUPm7u+JHGOtJ3FoO2M0I71cm5n/1bqZia6DnMs0M0zSxUdRJohJyOxuMuCKUSMmFpAqbncldIQKqbHpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATKAzhGV7hzRHOi/PufCxaS04xcwx/5Hz+AOiZjYk=</latexit> a2 <latexit sha1_base64="fHY8L0Lq6jayN2ybi5nRkuRgM8k=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lAm2027dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqaKsRWMRq26AmgkuWctwI1g3UQyjQLBOMLmd1ztPTGkey0czTZgf4UjykFM01nrAQW1QrrhVdyGyDl4OFcjVHJS/+sOYphGThgrUuue5ifEzVIZTwWalfqpZgnSCI9azKDFi2s8Wq87IhXWGJIyVfdKQhft7IsNI62kU2M4IzViv1ubmf7VeasJrP+MySQ2TdPlRmApiYjK/mwy5YtSIqQWkittdCR2jQmpsOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMIInuEV3hzhvDjvzseyteDkM6fwR87nD+odjYo=</latexit> <latexit sha1_base64="fHY8L0Lq6jayN2ybi5nRkuRgM8k=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lAm2027dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqaKsRWMRq26AmgkuWctwI1g3UQyjQLBOMLmd1ztPTGkey0czTZgf4UjykFM01nrAQW1QrrhVdyGyDl4OFcjVHJS/+sOYphGThgrUuue5ifEzVIZTwWalfqpZgnSCI9azKDFi2s8Wq87IhXWGJIyVfdKQhft7IsNI62kU2M4IzViv1ubmf7VeasJrP+MySQ2TdPlRmApiYjK/mwy5YtSIqQWkittdCR2jQmpsOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMIInuEV3hzhvDjvzseyteDkM6fwR87nD+odjYo=</latexit> <latexit sha1_base64="fHY8L0Lq6jayN2ybi5nRkuRgM8k=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lAm2027dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqaKsRWMRq26AmgkuWctwI1g3UQyjQLBOMLmd1ztPTGkey0czTZgf4UjykFM01nrAQW1QrrhVdyGyDl4OFcjVHJS/+sOYphGThgrUuue5ifEzVIZTwWalfqpZgnSCI9azKDFi2s8Wq87IhXWGJIyVfdKQhft7IsNI62kU2M4IzViv1ubmf7VeasJrP+MySQ2TdPlRmApiYjK/mwy5YtSIqQWkittdCR2jQmpsOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMIInuEV3hzhvDjvzseyteDkM6fwR87nD+odjYo=</latexit> <latexit sha1_base64="ck8pdC+ekZH4nUmSP+ZG7r8lEyk=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odOn4MoA7ncAFXEMIN3MEDdKALAhJ4hXdv4r15H6uuat66tDP4I+/zBzjGijg=</latexit> <latexit sha1_base64="5EnDFfMDBOio/2eay9En10Yo+dY=">AAAB33icbZBLSwMxFIXv+Ky1anXrJlgEV2WmG10KblxWtA9oh5JJ77ShmcyQ3BHK0J/gxoUi/it3/hvTx0JbDwQ+zknIvSfKlLTk+9/e1vbO7t5+6aB8WDk6PqmeVto2zY3AlkhVaroRt6ikxhZJUtjNDPIkUtiJJnfzvPOMxspUP9E0wzDhIy1jKTg565EPGoNqza/7C7FNCFZQg5Wag+pXf5iKPEFNQnFre4GfUVhwQ1IonJX7ucWMiwkfYc+h5gnasFiMOmOXzhmyODXuaGIL9/eLgifWTpPI3Uw4je16Njf/y3o5xTdhIXWWE2qx/CjOFaOUzfdmQ2lQkJo64MJINysTY264INdO2ZUQrK+8Ce1GPXD84EMJzuECriCAa7iFe2hCCwSM4AXe4N1T3qv3saxry1v1dgZ/5H3+AM+5jDU=</latexit> <latexit sha1_base64="5EnDFfMDBOio/2eay9En10Yo+dY=">AAAB33icbZBLSwMxFIXv+Ky1anXrJlgEV2WmG10KblxWtA9oh5JJ77ShmcyQ3BHK0J/gxoUi/it3/hvTx0JbDwQ+zknIvSfKlLTk+9/e1vbO7t5+6aB8WDk6PqmeVto2zY3AlkhVaroRt6ikxhZJUtjNDPIkUtiJJnfzvPOMxspUP9E0wzDhIy1jKTg565EPGoNqza/7C7FNCFZQg5Wag+pXf5iKPEFNQnFre4GfUVhwQ1IonJX7ucWMiwkfYc+h5gnasFiMOmOXzhmyODXuaGIL9/eLgifWTpPI3Uw4je16Njf/y3o5xTdhIXWWE2qx/CjOFaOUzfdmQ2lQkJo64MJINysTY264INdO2ZUQrK+8Ce1GPXD84EMJzuECriCAa7iFe2hCCwSM4AXe4N1T3qv3saxry1v1dgZ/5H3+AM+5jDU=</latexit> <latexit sha1_base64="p8tLOQbHVpAOVm/uqaDbqhYE8i4=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FSSXvRY9OKxov2ANpTJdtMu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTuljc2t7Z3ybmVv/+DwyD0+aeskU5S1aCIS1Q1RM8ElaxluBOumimEcCtYJJ7fzeueJKc0T+WimKQtiHEkecYrGWg84qA/cqlfzFiLr4BdQhULNgfvVHyY0i5k0VKDWPd9LTZCjMpwKNqv0M81SpBMcsZ5FiTHTQb5YdUYurDMkUaLsk4Ys3N8TOcZaT+PQdsZoxnq1Njf/q/UyE10HOZdpZpiky4+iTBCTkPndZMgVo0ZMLSBV3O5K6BgVUmPTqdgQ/NWT16Fdr/mW771q46aIowxncA6X4MMVNOAOmtACCiN4hld4c4Tz4rw7H8vWklPMnMIfOZ8/6N2Nhg==</latexit> <latexit sha1_base64="fHY8L0Lq6jayN2ybi5nRkuRgM8k=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lAm2027dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqaKsRWMRq26AmgkuWctwI1g3UQyjQLBOMLmd1ztPTGkey0czTZgf4UjykFM01nrAQW1QrrhVdyGyDl4OFcjVHJS/+sOYphGThgrUuue5ifEzVIZTwWalfqpZgnSCI9azKDFi2s8Wq87IhXWGJIyVfdKQhft7IsNI62kU2M4IzViv1ubmf7VeasJrP+MySQ2TdPlRmApiYjK/mwy5YtSIqQWkittdCR2jQmpsOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMIInuEV3hzhvDjvzseyteDkM6fwR87nD+odjYo=</latexit> <latexit sha1_base64="fHY8L0Lq6jayN2ybi5nRkuRgM8k=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lAm2027dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqaKsRWMRq26AmgkuWctwI1g3UQyjQLBOMLmd1ztPTGkey0czTZgf4UjykFM01nrAQW1QrrhVdyGyDl4OFcjVHJS/+sOYphGThgrUuue5ifEzVIZTwWalfqpZgnSCI9azKDFi2s8Wq87IhXWGJIyVfdKQhft7IsNI62kU2M4IzViv1ubmf7VeasJrP+MySQ2TdPlRmApiYjK/mwy5YtSIqQWkittdCR2jQmpsOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMIInuEV3hzhvDjvzseyteDkM6fwR87nD+odjYo=</latexit> <latexit sha1_base64="fHY8L0Lq6jayN2ybi5nRkuRgM8k=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lAm2027dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqaKsRWMRq26AmgkuWctwI1g3UQyjQLBOMLmd1ztPTGkey0czTZgf4UjykFM01nrAQW1QrrhVdyGyDl4OFcjVHJS/+sOYphGThgrUuue5ifEzVIZTwWalfqpZgnSCI9azKDFi2s8Wq87IhXWGJIyVfdKQhft7IsNI62kU2M4IzViv1ubmf7VeasJrP+MySQ2TdPlRmApiYjK/mwy5YtSIqQWkittdCR2jQmpsOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMIInuEV3hzhvDjvzseyteDkM6fwR87nD+odjYo=</latexit> <latexit sha1_base64="fHY8L0Lq6jayN2ybi5nRkuRgM8k=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lAm2027dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqaKsRWMRq26AmgkuWctwI1g3UQyjQLBOMLmd1ztPTGkey0czTZgf4UjykFM01nrAQW1QrrhVdyGyDl4OFcjVHJS/+sOYphGThgrUuue5ifEzVIZTwWalfqpZgnSCI9azKDFi2s8Wq87IhXWGJIyVfdKQhft7IsNI62kU2M4IzViv1ubmf7VeasJrP+MySQ2TdPlRmApiYjK/mwy5YtSIqQWkittdCR2jQmpsOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMIInuEV3hzhvDjvzseyteDkM6fwR87nD+odjYo=</latexit> <latexit sha1_base64="fHY8L0Lq6jayN2ybi5nRkuRgM8k=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lAm2027dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqaKsRWMRq26AmgkuWctwI1g3UQyjQLBOMLmd1ztPTGkey0czTZgf4UjykFM01nrAQW1QrrhVdyGyDl4OFcjVHJS/+sOYphGThgrUuue5ifEzVIZTwWalfqpZgnSCI9azKDFi2s8Wq87IhXWGJIyVfdKQhft7IsNI62kU2M4IzViv1ubmf7VeasJrP+MySQ2TdPlRmApiYjK/mwy5YtSIqQWkittdCR2jQmpsOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMIInuEV3hzhvDjvzseyteDkM6fwR87nD+odjYo=</latexit> <latexit sha1_base64="fHY8L0Lq6jayN2ybi5nRkuRgM8k=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lAm2027dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqaKsRWMRq26AmgkuWctwI1g3UQyjQLBOMLmd1ztPTGkey0czTZgf4UjykFM01nrAQW1QrrhVdyGyDl4OFcjVHJS/+sOYphGThgrUuue5ifEzVIZTwWalfqpZgnSCI9azKDFi2s8Wq87IhXWGJIyVfdKQhft7IsNI62kU2M4IzViv1ubmf7VeasJrP+MySQ2TdPlRmApiYjK/mwy5YtSIqQWkittdCR2jQmpsOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMIInuEV3hzhvDjvzseyteDkM6fwR87nD+odjYo=</latexit> am <latexit sha1_base64="uGkhqy/YuhTKr1EIG2B45HDVWx0=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHivYD2qXMptk2NMkuSVYopT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNU2SacoaNBGJbkdomOCKNSy3grVTzVBGgrWi0e2s3npi2vBEPdpxykKJA8VjTtE66wF7sleu+FV/LrIKQQ4VyFXvlb+6/YRmkilLBRrTCfzUhhPUllPBpqVuZliKdIQD1nGoUDITTuarTsmZc/okTrR7ypK5+3tigtKYsYxcp0Q7NMu1mflfrZPZ+DqccJVmlim6+CjOBLEJmd1N+lwzasXYAVLN3a6EDlEjtS6dkgshWD55FZoX1cDx/WWldpPHUYQTOIVzCOAKanAHdWgAhQE8wyu8ecJ78d69j0VrwctnjuGPvM8fQ5iNxQ==</latexit> <latexit sha1_base64="uGkhqy/YuhTKr1EIG2B45HDVWx0=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHivYD2qXMptk2NMkuSVYopT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNU2SacoaNBGJbkdomOCKNSy3grVTzVBGgrWi0e2s3npi2vBEPdpxykKJA8VjTtE66wF7sleu+FV/LrIKQQ4VyFXvlb+6/YRmkilLBRrTCfzUhhPUllPBpqVuZliKdIQD1nGoUDITTuarTsmZc/okTrR7ypK5+3tigtKYsYxcp0Q7NMu1mflfrZPZ+DqccJVmlim6+CjOBLEJmd1N+lwzasXYAVLN3a6EDlEjtS6dkgshWD55FZoX1cDx/WWldpPHUYQTOIVzCOAKanAHdWgAhQE8wyu8ecJ78d69j0VrwctnjuGPvM8fQ5iNxQ==</latexit> <latexit sha1_base64="uGkhqy/YuhTKr1EIG2B45HDVWx0=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHivYD2qXMptk2NMkuSVYopT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNU2SacoaNBGJbkdomOCKNSy3grVTzVBGgrWi0e2s3npi2vBEPdpxykKJA8VjTtE66wF7sleu+FV/LrIKQQ4VyFXvlb+6/YRmkilLBRrTCfzUhhPUllPBpqVuZliKdIQD1nGoUDITTuarTsmZc/okTrR7ypK5+3tigtKYsYxcp0Q7NMu1mflfrZPZ+DqccJVmlim6+CjOBLEJmd1N+lwzasXYAVLN3a6EDlEjtS6dkgshWD55FZoX1cDx/WWldpPHUYQTOIVzCOAKanAHdWgAhQE8wyu8ecJ78d69j0VrwctnjuGPvM8fQ5iNxQ==</latexit> <latexit sha1_base64="uGkhqy/YuhTKr1EIG2B45HDVWx0=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHivYD2qXMptk2NMkuSVYopT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNU2SacoaNBGJbkdomOCKNSy3grVTzVBGgrWi0e2s3npi2vBEPdpxykKJA8VjTtE66wF7sleu+FV/LrIKQQ4VyFXvlb+6/YRmkilLBRrTCfzUhhPUllPBpqVuZliKdIQD1nGoUDITTuarTsmZc/okTrR7ypK5+3tigtKYsYxcp0Q7NMu1mflfrZPZ+DqccJVmlim6+CjOBLEJmd1N+lwzasXYAVLN3a6EDlEjtS6dkgshWD55FZoX1cDx/WWldpPHUYQTOIVzCOAKanAHdWgAhQE8wyu8ecJ78d69j0VrwctnjuGPvM8fQ5iNxQ==</latexit> b P(yi > rk) = s ✓ m X j wjaj + bk ◆ <latexit sha1_base64="ODmb6Tbw4kN7qLYf/45mjVP376E=">AAACJXicbZDLSsNAFIYnXmu9RV26GSxCi1ASEXShUnTjsoK9QFPDZDppp51JwszEUkJfxo2v4saFRQRXvorTNAttPXDg4//PYeb8XsSoVJb1ZSwtr6yurec28ptb2zu75t5+XYaxwKSGQxaKpockYTQgNUUVI81IEMQ9Rhre4HbqN56IkDQMHtQoIm2OugH1KUZKS6556Qxph/SQSqrj4sil8BoKd1CCV1A6Hu12i46Mudt/5HDo9iHSfQI9d5B6JdcsWGUrLbgIdgYFkFXVNSdOJ8QxJ4HCDEnZsq1ItRMkFMWMjPNOLEmE8AB1SUtjgDiR7SS9cgyPtdKBfih0Bwqm6u+NBHEpR9zTkxypnpz3puJ/XitW/kU7oUEUKxLg2UN+zKAK4TQy2KGCYMVGGhAWVP8V4h4SCCsdbF6HYM+fvAj107Kt+f6sULnJ4siBQ3AEisAG56AC7kAV1AAGz+AVvIOJ8WK8GR/G52x0ych2DsCfMr5/AMaYo4o=</latexit> <latexit sha1_base64="ODmb6Tbw4kN7qLYf/45mjVP376E=">AAACJXicbZDLSsNAFIYnXmu9RV26GSxCi1ASEXShUnTjsoK9QFPDZDppp51JwszEUkJfxo2v4saFRQRXvorTNAttPXDg4//PYeb8XsSoVJb1ZSwtr6yurec28ptb2zu75t5+XYaxwKSGQxaKpockYTQgNUUVI81IEMQ9Rhre4HbqN56IkDQMHtQoIm2OugH1KUZKS6556Qxph/SQSqrj4sil8BoKd1CCV1A6Hu12i46Mudt/5HDo9iHSfQI9d5B6JdcsWGUrLbgIdgYFkFXVNSdOJ8QxJ4HCDEnZsq1ItRMkFMWMjPNOLEmE8AB1SUtjgDiR7SS9cgyPtdKBfih0Bwqm6u+NBHEpR9zTkxypnpz3puJ/XitW/kU7oUEUKxLg2UN+zKAK4TQy2KGCYMVGGhAWVP8V4h4SCCsdbF6HYM+fvAj107Kt+f6sULnJ4siBQ3AEisAG56AC7kAV1AAGz+AVvIOJ8WK8GR/G52x0ych2DsCfMr5/AMaYo4o=</latexit> <latexit sha1_base64="ODmb6Tbw4kN7qLYf/45mjVP376E=">AAACJXicbZDLSsNAFIYnXmu9RV26GSxCi1ASEXShUnTjsoK9QFPDZDppp51JwszEUkJfxo2v4saFRQRXvorTNAttPXDg4//PYeb8XsSoVJb1ZSwtr6yurec28ptb2zu75t5+XYaxwKSGQxaKpockYTQgNUUVI81IEMQ9Rhre4HbqN56IkDQMHtQoIm2OugH1KUZKS6556Qxph/SQSqrj4sil8BoKd1CCV1A6Hu12i46Mudt/5HDo9iHSfQI9d5B6JdcsWGUrLbgIdgYFkFXVNSdOJ8QxJ4HCDEnZsq1ItRMkFMWMjPNOLEmE8AB1SUtjgDiR7SS9cgyPtdKBfih0Bwqm6u+NBHEpR9zTkxypnpz3puJ/XitW/kU7oUEUKxLg2UN+zKAK4TQy2KGCYMVGGhAWVP8V4h4SCCsdbF6HYM+fvAj107Kt+f6sULnJ4siBQ3AEisAG56AC7kAV1AAGz+AVvIOJ8WK8GR/G52x0ych2DsCfMr5/AMaYo4o=</latexit> <latexit sha1_base64="ODmb6Tbw4kN7qLYf/45mjVP376E=">AAACJXicbZDLSsNAFIYnXmu9RV26GSxCi1ASEXShUnTjsoK9QFPDZDppp51JwszEUkJfxo2v4saFRQRXvorTNAttPXDg4//PYeb8XsSoVJb1ZSwtr6yurec28ptb2zu75t5+XYaxwKSGQxaKpockYTQgNUUVI81IEMQ9Rhre4HbqN56IkDQMHtQoIm2OugH1KUZKS6556Qxph/SQSqrj4sil8BoKd1CCV1A6Hu12i46Mudt/5HDo9iHSfQI9d5B6JdcsWGUrLbgIdgYFkFXVNSdOJ8QxJ4HCDEnZsq1ItRMkFMWMjPNOLEmE8AB1SUtjgDiR7SS9cgyPtdKBfih0Bwqm6u+NBHEpR9zTkxypnpz3puJ/XitW/kU7oUEUKxLg2UN+zKAK4TQy2KGCYMVGGhAWVP8V4h4SCCsdbF6HYM+fvAj107Kt+f6sULnJ4siBQ3AEisAG56AC7kAV1AAGz+AVvIOJ8WK8GR/G52x0ych2DsCfMr5/AMaYo4o=</latexit> Step 1: Converting the estimated probability 
 of each task into a binary label (0/1) Predicting the Rank/Ordinal Label Step 2: Summing the K-1 binary labels Arbitrary DNN
  15. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    15 Desired property: probability estimates for the K-1 tasks are decreasing b P ⇣ y(1) i = 1 ⌘ b P ⇣ y(2) i = 1 ⌘ . . . b P ⇣ y(K 1) i = 1 ⌘ <latexit sha1_base64="NP+hEuHMAwq8xMrIU/kwhm1MtRw=">AAACcnichVHdahNBFJ7dak1jbVdLbxR0aigkUMNuLNQbIeiN4E0E8wPZGGZnzyZDZn+cOdsSln0AX887n8IbH8BJ3IuYtPTAwMf3w5n5Jsik0Oi6vyx778HD/Ue1g/rjwydHx87TZwOd5opDn6cyVaOAaZAigT4KlDDKFLA4kDAMFh9X+vAalBZp8hWXGUxiNktEJDhDQ02dH/6NCGHOsOiVvoQIm8tpIcpvRdNrle89X4nZHFvUn8F3eqe1s2uVYYr6ntjnN5s7pk7DbbvrobvAq0CDVNObOj/9MOV5DAlyybQee26Gk4IpFFxCWfdzDRnjCzaDsYEJi0FPinVlJT03TEijVJmTIF2zm4mCxVov48A4Y4Zzva2tyNu0cY7Ru0khkixHSPi/RVEuKaZ01T8NhQKOcmkA40qYu1I+Z4pxNL9UNyV420/eBYNO23vb7ny5bHQ/VHXUyAvymjSJR65Il3wiPdInnPy2Tq2X1ivrj/3cPrOr7myrypyQ/8a++AsgJ70n</latexit> where the predicted empirical probability for task k is defined as b P ⇣ y(k) i = 1 ⌘ = s (g (xi, W) + bk) <latexit sha1_base64="6EJjh1yk88YJqSa9wwsI1dMYJXc=">AAACS3icbVBNTxsxEPUGKDSlJZQjF4sIKYgq2qWV4IKE4NJjkAhByqYrrzObWPF+yJ5tG1n7/7hw4caf4MKhqOKAN1kkvkay/Oa9N/L4hZkUGl33xqktLC59WF75WP+0+vnLWmP967lOc8Why1OZqouQaZAigS4KlHCRKWBxKKEXTk5KvfcblBZpcobTDAYxGyUiEpyhpYJG6P8RQxgzNJ3ClxBhaxoYUfwyrclOcej5SozGuHOo59pofvkxw3EYmb9F6f1Gn/peUfl3w8BMnpqg0XTb7qzoW+BVoEmq6gSNa3+Y8jyGBLlkWvc9N8OBYQoFl1DU/VxDxviEjaBvYcJi0AMzy6Kg25YZ0ihV9iRIZ+zzCcNiradxaJ3l1vq1VpLvaf0co4OBEUmWIyR8/lCUS4opLYOlQ6GAo5xawLgSdlfKx0wxjjb+ug3Be/3lt+B8r+19b++d/mgeHVdxrJBNskVaxCP75Ij8JB3SJZxcklvyj9w7V86d8995mFtrTjWzQV5UbekR0/S1Cg==</latexit> Hypothesis: Rank Consistency Improves Predictive Performance [Rank consistency]
  16. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    16 Desired property: probability estimates for the K-1 tasks are decreasing b P ⇣ y(1) i = 1 ⌘ b P ⇣ y(2) i = 1 ⌘ . . . b P ⇣ y(K 1) i = 1 ⌘ <latexit sha1_base64="NP+hEuHMAwq8xMrIU/kwhm1MtRw=">AAACcnichVHdahNBFJ7dak1jbVdLbxR0aigkUMNuLNQbIeiN4E0E8wPZGGZnzyZDZn+cOdsSln0AX887n8IbH8BJ3IuYtPTAwMf3w5n5Jsik0Oi6vyx778HD/Ue1g/rjwydHx87TZwOd5opDn6cyVaOAaZAigT4KlDDKFLA4kDAMFh9X+vAalBZp8hWXGUxiNktEJDhDQ02dH/6NCGHOsOiVvoQIm8tpIcpvRdNrle89X4nZHFvUn8F3eqe1s2uVYYr6ntjnN5s7pk7DbbvrobvAq0CDVNObOj/9MOV5DAlyybQee26Gk4IpFFxCWfdzDRnjCzaDsYEJi0FPinVlJT03TEijVJmTIF2zm4mCxVov48A4Y4Zzva2tyNu0cY7Ru0khkixHSPi/RVEuKaZ01T8NhQKOcmkA40qYu1I+Z4pxNL9UNyV420/eBYNO23vb7ny5bHQ/VHXUyAvymjSJR65Il3wiPdInnPy2Tq2X1ivrj/3cPrOr7myrypyQ/8a++AsgJ70n</latexit> b1 b2 · · · bK 1 <latexit sha1_base64="AUs/ttxft6HIbgiVBmeolp1ga+Y=">AAACEXicbZDLSgMxFIYz9VbrbdSlm2ARurHMVEGXRTeCmwr2Au0wZNJMG5q5mJwRyjCv4MZXceNCEbfu3Pk2pu0g2vpD4OM/5yQ5vxcLrsCyvozC0vLK6lpxvbSxubW9Y+7utVSUSMqaNBKR7HhEMcFD1gQOgnViyUjgCdb2RpeTevueScWj8BbGMXMCMgi5zykBbblmxXNTO8O9AbvDGms59voRqB/3+tjOXLNsVa2p8CLYOZRRroZrfupLaBKwEKggSnVtKwYnJRI4FSwr9RLFYkJHZMC6GkMSMOWk040yfKSdPvYjqU8IeOr+nkhJoNQ48HRnQGCo5msT879aNwH/3El5GCfAQjp7yE8EhghP4sF9LhkFMdZAqOT6r5gOiSQUdIglHYI9v/IitGpV+6Rauzkt1y/yOIroAB2iCrLRGaqjK9RATUTRA3pCL+jVeDSejTfjfdZaMPKZffRHxsc3Xl2cFw==</latexit> 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 model. The choice of task importance parameters is covered in more detail in Section 3.5. Next, we provide a theoreti- cal guarantee for classifier consistency under uniform and non-uniform task importance weighting given that the task importance weights are positive numbers. 3.3. Theoretical Guarantees for Classifier Consistency In the following theorem, we show that by minimizing the loss L (Eq. 4), the learned bias units of the output layer are non-increasing such that b1 b2 . . . , bK 1 . Consequently, the predicted confidence scores or prob- ability estimates of the K 1 tasks are decreasing, i.e., b P(y(1) i = 1) b P(y(2) i = 1) . . . b P(y(K 1) i = 1) for all i, ensuring classifier consistency. {fk }K 1 k=1 given by Eq. 5 are also rank-monotonic. Theorem 1 (ordered biases). By minimizing loss function defined in Eq. (4), the optimal solution (W⇤, b⇤) satisfies b⇤ 1 b⇤ 2 . . . b⇤ K 1. Proof. Suppose (W, b) is an optimal solution and bk < bk+1 for some k. Claim: by either replacing bk with bk+1 or replacing bk+1 with bk , we can decrease the objective value L. Let A1 = {n : y(k) n = y(k+1) n = 1}, and know that either 1L < 0 or 2L < 0. Thus, our claim is justified, and we conclude that any optimal solution (W⇤, b⇤) that minimizes L satisfies b⇤ 1 b⇤ 2 . . . b⇤ K 1 . Note that the theorem for rank-monotonicity in (Li & Lin, 2007), in contrast to Theorem 1, requires the use of a cost matrix C with each row yn being convex. Under this con- vexity condition, let (k) yn = |Cyn,k Cyn,k+1 | be the weight of loss of the kth task on the nth example, which depends on the label yn . In (Li & Lin, 2007), the researchers proved that by using example-specific task weights (k) yn , the opti- mal thresholds are ordered. This assumption requires that (k) yn (k+1) yn when k + 1 < yn , and (k) yn  (k+1) yn when k + 1 > yn . Theorem 1 is free from this requirement and allows us to choose a fixed weight for each task that does not depend on the individual training examples, which greatly reduces the training complexity. Moreover, Theorem 1 al- lows for choosing either a simple uniform task weighting or taking dataset imbalances into account (Section 3.5) while still guaranteeing that the predicted probabilities are non- decreasing and the task predictions are consistent. 3.4. Generalization Bounds (Detailed proof provided in our paper) Rank Consistency can be satisfied by ordered bias units due to the weight constraint Wenzhi Cao, Vahid Mirjalili, Sebastian Raschka. Rank-consistent Ordinal Regression for Neural Networks. arXiv:1901.07884v3. https://arxiv.org/abs/1901.07884v3 Hypothesis: Rank Consistency Improves Predictive Performance
  17. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    17 As it can be seen in Table S2, the ordinal method by Niu et al. [13] has a lower number of rank inconsistencies if it predicts the age label correctly. Consequently, the strict rank consistency guaranteed by CORAL-CNN could explain its predictive performance advantage over Ordinal-CNN. OR-CNN CORAL-CNN Figure S2: Plots show graphs of the predicted probabilities for each binary classifier task on one test data point in the MORPH dataset by OR-CNN (left subpanel) and CORAL-CNN (right subpanel). In this example, the ordinal regression CNN has an inconsistency at rank 26. The CORAL-CNN does not suffer from inconsistencies such that the rank prediction is a cumulative distribution function. Cao, W., Mirjalili V., Raschka S. (2019). 
 Rank-consistent Ordinal Regression for Neural Networks. arXiv: 1901.07884v3. https://arxiv.org/abs/1901.07884v3 Niu, Z., Zhou, M., Wang, L., Gao, X., & Hua, G. (2016). Ordinal Regression with Multiple Output CNN for Age Estimation. CVPR.
  18. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    18 MORPH-2 • 55,608 face images • age range: 16-70 years 
 AFAD • 165,501 face images • age range: 15-40 years 
 UTKFace • 16,434 face images • age range: 21-60 years 
 CACD • 159,449 face images • age range: 14-62 years 
 Datasets
  19. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    19 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 Weight sharing across k-1 tasks <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> <latexit sha1_base64="tFROaEGhmnnMpUlcEPFjR2z/BNI=">AAAB6XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9dDL+27Vq3lzkVXwC6hCoUbf/eoNEpbFKA0TVOuu76UmyKkynAmcVnqZxpSyMR1i16KkMeogn286JWfWGZAoUfZJQ+bu74mcxlpP4tB2xtSM9HJtZv5X62Ymug5yLtPMoGSLj6JMEJOQ2dlkwBUyIyYWKFPc7krYiCrKjA2nYkPwl09ehdZFzbd8f1mt3xRxlOEETuEcfLiCOtxBA5rAIIJneIU3Z+y8OO/Ox6K15BQzx/BHzucPm4aNZQ==</latexit> K 1 <latexit sha1_base64="r9EyNDc4ZkK0RbMq+OXc0Let6lU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8GJJRNBj0YvgpaL9gDaUzXbSLt1swu5GKKE/wYsHRbz6i7z5b9y2OWjrCwsP78ywM2+QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwehmWm89odI8lo9mnKAf0YHkIWfUWOvh7szrlStu1Z2JLIOXQwVy1Xvlr24/ZmmE0jBBte54bmL8jCrDmcBJqZtqTCgb0QF2LEoaofaz2aoTcmKdPgljZZ80ZOb+nshopPU4CmxnRM1QL9am5n+1TmrCKz/jMkkNSjb/KEwFMTGZ3k36XCEzYmyBMsXtroQNqaLM2HRKNgRv8eRlaJ5XPcv3F5XadR5HEY7gGE7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9yPn8AexuNQQ==</latexit> <latexit sha1_base64="r9EyNDc4ZkK0RbMq+OXc0Let6lU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8GJJRNBj0YvgpaL9gDaUzXbSLt1swu5GKKE/wYsHRbz6i7z5b9y2OWjrCwsP78ywM2+QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwehmWm89odI8lo9mnKAf0YHkIWfUWOvh7szrlStu1Z2JLIOXQwVy1Xvlr24/ZmmE0jBBte54bmL8jCrDmcBJqZtqTCgb0QF2LEoaofaz2aoTcmKdPgljZZ80ZOb+nshopPU4CmxnRM1QL9am5n+1TmrCKz/jMkkNSjb/KEwFMTGZ3k36XCEzYmyBMsXtroQNqaLM2HRKNgRv8eRlaJ5XPcv3F5XadR5HEY7gGE7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9yPn8AexuNQQ==</latexit> <latexit sha1_base64="r9EyNDc4ZkK0RbMq+OXc0Let6lU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8GJJRNBj0YvgpaL9gDaUzXbSLt1swu5GKKE/wYsHRbz6i7z5b9y2OWjrCwsP78ywM2+QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwehmWm89odI8lo9mnKAf0YHkIWfUWOvh7szrlStu1Z2JLIOXQwVy1Xvlr24/ZmmE0jBBte54bmL8jCrDmcBJqZtqTCgb0QF2LEoaofaz2aoTcmKdPgljZZ80ZOb+nshopPU4CmxnRM1QL9am5n+1TmrCKz/jMkkNSjb/KEwFMTGZ3k36XCEzYmyBMsXtroQNqaLM2HRKNgRv8eRlaJ5XPcv3F5XadR5HEY7gGE7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9yPn8AexuNQQ==</latexit> <latexit sha1_base64="r9EyNDc4ZkK0RbMq+OXc0Let6lU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8GJJRNBj0YvgpaL9gDaUzXbSLt1swu5GKKE/wYsHRbz6i7z5b9y2OWjrCwsP78ywM2+QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwehmWm89odI8lo9mnKAf0YHkIWfUWOvh7szrlStu1Z2JLIOXQwVy1Xvlr24/ZmmE0jBBte54bmL8jCrDmcBJqZtqTCgb0QF2LEoaofaz2aoTcmKdPgljZZ80ZOb+nshopPU4CmxnRM1QL9am5n+1TmrCKz/jMkkNSjb/KEwFMTGZ3k36XCEzYmyBMsXtroQNqaLM2HRKNgRv8eRlaJ5XPcv3F5XadR5HEY7gGE7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9yPn8AexuNQQ==</latexit> Figure 2. Illustration of the Consistent Rank Logits CNN (CORAL-CNN) used for age prediction. From the estimated probability values, the binary labels are obtained via Eq. (5) and converted to the age label via Eq. (1). Table 1. Age prediction errors on the test sets without task importance weighting. All models are based on the ResNet-34 architecture. Method Random Seed MORPH-2 AFAD UTKFace CACD MAE RMSE MAE RMSE MAE RMSE MAE RMSE CE-CNN 0 3.40 4.88 3.98 5.55 6.57 9.16 6.18 8.86 1 3.39 4.87 4.00 5.57 6.24 8.69 6.10 8.79 2 3.37 4.87 3.96 5.50 6.29 8.78 6.13 8.87 AVG ± SD 3.39 ± 0.02 4.89 ± 0.01 3.98 ± 0.02 5.54 ± 0.04 6.37 ± 0.18 8.88 ± 0.25 6.14 ± 0.04 8.84 ± 0.04 OR-CNN (Niu et al., 2016) 0 2.98 4.26 3.66 5.10 5.71 8.11 5.53 7.91 1 2.98 4.26 3.69 5.13 5.80 8.12 5.53 7.98 2 2.96 4.20 3.68 5.14 5.71 8.11 5.49 7.89 AVG ± SD 2.97 ± 0.01 4.24 ± 0.03 3.68 ± 0.02 5.13 ± 0.02 5.74 ± 0.05 8.08 ± 0.06 5.52 ± 0.02 7.93 ± 0.05 CORAL-CNN (ours) 0 2.68 3.75 3.49 4.82 5.46 7.61 5.56 7.80 1 2.63 3.66 3.46 4.83 5.46 7.63 5.37 7.64 2 2.61 3.64 3.52 4.91 5.48 7.63 5.25 7.53 AVG ± SD 2.64 ± 0.04 3.68 ± 0.06 3.49 ± 0.03 4.85 ± 0.05 5.47 ± 0.01 7.62 ± 0.01 5.39 ± 0.16 7.66 ± 0.14 Table 2. Performance comparison after training with and without task importance weighting (Eq. 7). The performance values are reported as average MAE ± SD from 3 independent runs each. All models are based on the ResNet-34 architecture. Method Weight MORPH-2 AFAD UTKFace CACD 5.1. Estimating the Apparent Age from Face Images First, we note that for all methods, the overall predictive per- formance on the different datasets appears in the following order: MORPH-2 > AFAD > CACD > UTKFace (Table 1 and Figure 3). Possible reasons why all approaches perform MORPH-2 55,608 face images age range: 16-70 years 
 AFAD 165,501 face images age range: 15-40 years 
 UTKFace 16,434 face images age range: 21-60 years 
 CACD 159,449 face images age range: 14-62 years 
 Test Results Section 4.1). ORPH-2 dataset (Ricanek mages) was preprocessed n in the respective dataset Sagonas et al., 2016) via hen aligning each image position. The faces were f the nose was located in labels used in this study e CACD database (Chen milar to MORPH-2 such image with the nose tip ber of images is 159,449 e faces were already cen- (AFAD; 165,501 faces Niu et al., 2016), no fur- and age prediction: MAE = 1 N N X i=1 yi h(xi) RMSE = v u u t 1 N N X i=1 yi h(xi) 2 , (8) where yi is the ground truth rank of the ith test example and h(xi) is the predicted rank, respectively. The MAE and RMSE values reported in this study were computed on the test set after the last training epoch. The training was repeated three times with different random seeds for model weight initialization while the random seeds were consistent between the different methods to allow for fair comparisons. All CNNs were trained for 200 epochs with stochastic gra- dient descent via adaptive moment estimation (Kingma & Ba, 2015) using exponential decay rates 0 = 0.90 and 2 = 0.99 (PyTorch default) and learning rate ↵ = 0.0005. In addition, we computed the Cumulative Score (CS) as the proportion of images for which the absolute differences between the predicted rank labels and the ground truth are 4.1. Datasets and Preprocessing MORPH-2 and CACD. The MORPH-2 dataset (Ricanek & Tesafaye, 2006) (55,608 face images) was preprocessed by locating the average eye-position in the respective dataset using facial landmark detection (Sagonas et al., 2016) via MLxtend (Raschka, 2018) and then aligning each image in the dataset to the average eye position. The faces were then re-aligned such that the tip of the nose was located in the center of each image. The age labels used in this study ranged between 16-70 years. The CACD database (Chen et al., 2014) was preprocessed similar to MORPH-2 such that the faces spanned the whole image with the nose tip being in the center. The total number of images is 159,449 in the age range 14-62 years. AFAD and UTKFace. Since the faces were already cen- tered in the Asian Face Database (AFAD; 165,501 faces with ages labels between 15-40) (Niu et al., 2016), no fur- ther alignment was applied. The UTKFace database (Zhang & Qi, 2017) was also available in a preprocessed form such that no additional steps were required. In this study, we considered face images with age labels between 21-60 years MAE = N i=1 yi h(xi) RMSE = v u u t 1 N N X i=1 yi h(xi) 2 , ( where yi is the ground truth rank of the ith test examp and h(xi) is the predicted rank, respectively. The MA and RMSE values reported in this study were computed o the test set after the last training epoch. The training wa repeated three times with different random seeds for mod weight initialization while the random seeds were consiste between the different methods to allow for fair comparison All CNNs were trained for 200 epochs with stochastic gr dient descent via adaptive moment estimation (Kingma Ba, 2015) using exponential decay rates 0 = 0.90 an 2 = 0.99 (PyTorch default) and learning rate ↵ = 0.000 In addition, we computed the Cumulative Score (CS) a the proportion of images for which the absolute differenc between the predicted rank labels and the ground truth a below a threshold T: CS(T) = 1 N X 1 |yi h(xi)|  T . (
  20. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    20 Consistent Rank Logits (CORAL) CNN for Ordinal Regression 1st 5th 10th 15th 20th 25th kth Task 0.0 0.2 0.4 0.6 0.8 1.0 Task Importance (k) Figure 1. Example of the task importance weighting according to Eq. (7) shown for the AFAD dataset (Section 4.1). 4. Experiments output layer with the corresponding binary tasks (Figure 2) and refer to this CNN as CORAL-CNN. Similar to CORAL- CNN, we replaced the cross-entropy layer of the ResNet-34 with the binary tasks for ordinal regression described in (Niu et al., 2016) and refer to this architecture as OR-CNN. 4.3. Training and Evaluation For model evaluation and comparison, we computed the mean absolute error (MAE) and root mean squared error (RMSE), which are standard metrics used for age prediction: MAE = 1 N N X i=1 yi h(xi) 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 AVG ± SD 2.64 ± 0.04 3.68 ± 0.06 3.49 ± 0 Table 2. Performance comparison after training with and without task importance weighting (Eq. 7). The performance values are reported as average MAE ± SD from 3 independent runs each. All models are based on the ResNet-34 architecture. Method Weight MORPH-2 AFAD UTKFace CACD OR-CNN (Niu et al., 2016) NO 2.97 ± 0.01 3.68 ± 0.02 5.74 ± 0.05 5.52 ± 0.02 OR-CNN (Niu et al., 2016) YES 2.91 ± 0.02 3.65 ± 0.03 5.76 ± 0.19 5.49 ± 0.02 CORAL-CNN (ours) NO 2.64 ± 0.04 3.49 ± 0.03 5.47 ± 0.01 5.39 ± 0.16 CORAL-CNN (ours) YES 2.59 ± 0.03 3.48 ± 0.03 5.39 ± 0.07 5.35 ± 0.09 regression approach described in (Niu et al., 2016), denoted as OR-CNN. All implementations were based on the ResNet- 34 architecture as described in Section 4.2, including the With optional task importance weighting Test Results
  21. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    21 Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. "An analysis of deep neural network models for practical applications." arXiv preprint arXiv:1605.07678 (2016). crop top-1 vali- gle-model archi- Figure 2: Top1 vs. operations, size / parameters. Top-1 one-crop accuracy versus amount of operations
  22. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    22 required for the models from all three methods to converge. Method Random Seed MORPH-2 AFAD UTKFace CACD MAE RMSE MAE RMSE MAE RMSE MAE RMSE CE-CNN 0 14.07 17.54 3.84 5.38 6.32 8.72 5.73 7.82 1 14.07 17.54 3.87 5.39 6.26 8.55 5.66 7.68 2 3.71 5.15 3.93 5.45 6.33 8.8 5.81 7.89 AVG ± SD 10.62 ± 5.98 13.41 ± 7.15 3.88 ± 0.05 5.41 ± 0.04 6.30 ± 0.04 8.69 ± 0.13 5.73 ± 0.08 7.80 ± 0.11 OR-CNN [13] 0 2.75 3.82 3.53 4.95 6.42 8.60 5.31 7.47 1 2.92 4.08 3.55 5.00 6.25 8.33 5.28 7,47 2 2.95 4.14 3.72 5.23 6.50 8.81 5.39 7.52 AVG ± SD 2.87 ± 0.11 4.01 ± 0.17 3.60 ± 0.10 5.06 ± 0.15 6.39 ± 0.13 8.58 ± 0.24 5.33 ± 0.06 7.49 ± 0.03 CORAL-CNN (ours) 0 2.76 3.73 3.45 4.78 5.95 8.28 5.25 7.49 1 2.79 3.74 3.39 4.72 5.59 7.6 5.21 7.42 2 2.87 3.94 3.4 4.75 5.96 8.22 5.28 7.48 AVG ± SD 2.81 ± 0.06 3.80 ± 0.12 3.41 ± 0.03 4.75 ± 0.03 5.83 ± 0.21 8.03 ± 0.38 5.25 ± 0.04 7.46 ± 0.04 Table S5: Comparison of cross entropy (CE-CNN), Niu et. al’s ordinal regression CNN (OR-CNN) and our CORAL-CNN based on the Inception-v3 (i.e., Inception-v2 + auxiliary losses) architecture. All models were trained until convergence via 100 epochs using the ADAM optimizer with default settings as described in the main paper and a learning rate of ↵ = 5 ⇥ 10 04 Method Random Seed MORPH-2 AFAD UTKFace CACD MAE RMSE MAE RMSE MAE RMSE MAE RMSE CE-CNN 0 3.07 4.39 3.78 5.30 6.73 9.47 5.52 8.18 1 3.00 4.35 3.77 5.31 6.52 9.08 5.46 8.09 2 3.00 4.36 3.79 5.33 6.81 9.4 5.44 8.04 AVG ± SD 3.02 ± 0.04 4.37 ± 0.02 5.31 ± 0.02 3.78 ± 0.01 6.69 ± 0.15 9.32 ± 0.21 5.47 ± 0.04 8.10 ± 0.07 OR-CNN [13] 0 2.52 3.59 3.42 4.84 5.74 7.89 4.98 7.43 1 2.57 3.69 3.45 4.87 5.49 7.58 4.93 7.37 2 2.51 3.60 3.36 4.75 5.41 7.46 4.94 7.33 VGG-16 OR-CNN [13] 1 2.92 4.08 3.55 5.00 6.25 8.33 5.28 7,47 2 2.95 4.14 3.72 5.23 6.50 8.81 5.39 7.52 AVG ± SD 2.87 ± 0.11 4.01 ± 0.17 3.60 ± 0.10 5.06 ± 0.15 6.39 ± 0.13 8.58 ± 0.24 5.33 ± 0.06 7.49 ± 0.03 CORAL-CNN (ours) 0 2.76 3.73 3.45 4.78 5.95 8.28 5.25 7.49 1 2.79 3.74 3.39 4.72 5.59 7.6 5.21 7.42 2 2.87 3.94 3.4 4.75 5.96 8.22 5.28 7.48 AVG ± SD 2.81 ± 0.06 3.80 ± 0.12 3.41 ± 0.03 4.75 ± 0.03 5.83 ± 0.21 8.03 ± 0.38 5.25 ± 0.04 7.46 ± 0.04 Table S5: Comparison of cross entropy (CE-CNN), Niu et. al’s ordinal regression CNN (OR-CNN) and our CORAL-CNN based on the Inception-v3 (i.e., Inception-v2 + auxiliary losses) architecture. All models were trained until convergence via 100 epochs using the ADAM optimizer with default settings as described in the main paper and a learning rate of ↵ = 5 ⇥ 10 04 Method Random Seed MORPH-2 AFAD UTKFace CACD MAE RMSE MAE RMSE MAE RMSE MAE RMSE CE-CNN 0 3.07 4.39 3.78 5.30 6.73 9.47 5.52 8.18 1 3.00 4.35 3.77 5.31 6.52 9.08 5.46 8.09 2 3.00 4.36 3.79 5.33 6.81 9.4 5.44 8.04 AVG ± SD 3.02 ± 0.04 4.37 ± 0.02 5.31 ± 0.02 3.78 ± 0.01 6.69 ± 0.15 9.32 ± 0.21 5.47 ± 0.04 8.10 ± 0.07 OR-CNN [13] 0 2.52 3.59 3.42 4.84 5.74 7.89 4.98 7.43 1 2.57 3.69 3.45 4.87 5.49 7.58 4.93 7.37 2 2.51 3.60 3.36 4.75 5.41 7.46 4.94 7.33 AVG ± SD 2.53 ± 0.03 3.63 ± 0.06 3.41 ± 0.05 4.82 ± 0.06 5.55 ± 0.17 7.64 ± 0.22 4.95 ± 0.03 7.38 ± 0.05 CORAL-CNN (ours) 0 2.45 3.41 3.28 4.59 5.57 7.72 4.92 7.16 1 2.41 3.36 3.32 4.63 5.26 7.3 4.91 7.21 2 2.43 3.39 3.20 4.59 5.76 7.95 4.87 7.11 AVG ± SD 2.43 ± 0.02 3.39 ± 0.03 3.27 ± 0.06 4.60± 0.02 5.53 ± 0.25 7.66 ± 0.33 4.90 ± 0.03 7.16 ± 0.05 Inception-v3
  23. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    23 Part II: Hiding Soft-Biometric Attributes 
 from Face Images
  24. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    24 A. Identification Determine identity of an unknown person 1-to-n matching ... B. Verification Verify claimed identity of a person 1-to-1 matching (CelebA dataset) (MUCT dataset) Biometric (Face) Recognition
  25. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    25 Identity John Doe Gender Male Age 65 Medical Healthy SOFT BIOMETRIC ATTRIBUTES Race Caucasian Identity https://media.pitchfork.com/photos/59c0335abe5bf47cb9787b75/2:1/w_790/lynch.jpg John Doe Age 65 Race Caucasian Medical Healthy SOFT BIOMETRIC ATTRIBUTES
  26. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    26 1.Identity theft: combining soft biometric info with publicly available data 2.Profiling: e.g., gender/race based profiling 3.Ethics: extracting data without users’ consent Soft-biometric Attributes: Issues and Concerns
  27. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    27 1. Perturb soft-biometric (e.g., gender) information 2. Ensure realistic face images 3. Retain biometric face recognition utility Goal: Selective Privacy
  28. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    28 100101010101111 101010101001000 001101010101010 101001100101010 010111010001010 101110001010101 101001010100101 100101010101111 101010101001000 001101010101010 101001100101010 010111010001010 101110001010101 101001010100101 Gender classifier Face matcher P(same person) P(male) p("same person") p("male") Face Matcher Gender Classifier
  29. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    29 100101010101111 101010101001000 001101010101010 101001100101010 010111010001010 101110001010101 101001010100101 100101010101111 101010101001000 001101010101010 101001100101010 010111010001010 101110001010101 101001010100101 Face Matcher Gender Classifier
  30. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    30 Autoencoders
 Unsupervised Learning: 
 Representation Learning/Dimensionality Reduction Encoder Source: https://3.bp.blogspot.com/- OUd11VBJNAM/VsFacR_YhBI/AAAAAAAABh0/ ZKfKAnRj3x0/s1600/cannot%2Bresist.jpg Latent representation/feature embedding Decoder
  31. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    31 Gender classifier Face matcher Autoencoder to perturb image !(X) = X' Face Matcher Gender Classifier Autoencoder to perturb image ϕ(X) = X′
  32. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    32 General architecture of the 
 semi-adversarial network (SAN)
  33. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    33 Objective 1: Realistic images Objective 3: Confound gender Objective 2: Retain matching utility General architecture of the 
 semi-adversarial network (SAN)
  34. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    34 Semi-adversarial network Objective 1: Realistic images Objective 3: Confound gender Objective 2: Retain matching utility adversarial not adversarial
  35. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    36 Same gender prototype: Gender prototypes Class labels ! ∈ 0, 1 , where 0 = female, 1 = male Opposite gender prototype:
  36. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    38 Cost function for semi-adversarial learning 1. Pixel-wise similarity term • Only used during the pre-training of the autoencoder 2. Loss term related gender attribute • Correctly predict gender of X'SM • Flip the gender prediction of X'OP 3. Loss related to matching !" #, #%& ' = ) *+, # - , # %& '(-) 001×001 345 !6 #, #%& ' , #78 ' , 9; ;6 = + 9, ;6 #%& ' + + 1 − 9, ;6 #78 ' !& #, #%& ' ; @& = @& #%& ' − @& # 0 0
  37. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    39 Female: 69% Male: 99% Female: 71% Female: 58% Male: 99% Female: 98% Male: 97% Male: 100% SAN Examples Original Inputs Outputs
  38. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    40 G-COTS/ IntraFace M-COTS Replace detachable parts for evaluation Replacing Detachable Parts for Evaluation
  39. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    41 Figure 6. ROC curves comparing the performance of IntraFace (a-d) and G-COTS (e-h) gender classification software on origi- Figure 7. ROC curves matching rates) of M- [21] A. Othman and A. Ross. Privacy of facial soft biometrics: Suppressing gender but retaining identity. In European Conference on Computer Vision Workshop, pages 682–696. Springer, 2014. IntraFace Gender Classifier Performance
  40. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    42 Figure 6. ROC curves comparing the performance of IntraFace (a-d) and G-COTS (e-h) gender classification software on origi- nal images (“Before”) as well as images perturbed via the con- Figure 7. ROC curves showing the performance (true and false matching rates) of M-COTS biometric matching software on the original images (“Before”) compared to the perturbed images [21] A. Othman and A. Ross. Privacy of facial soft biometrics: Suppressing gender but retaining identity. In European Conference on Computer Vision Workshop, pages 682–696. Springer, 2014. 10 −7 10 −6 10 −5 10 −4 10 −3 10 −2 10 −1 10 0 0.00 0.25 0.50 0.75 1.00 (a) MUCT 10 −7 10 −6 10 −5 10 −4 10 −3 10 −2 10 −1 10 0 0.00 0.25 0.50 0.75 1.00 (b) LFW 10 −6 10 −5 10 −4 10 −3 10 −2 10 −1 10 0 0.00 0.25 0.50 0.75 1.00 (c) AR-face True Matching Rate True Matching Rate True Matching Rate False Matching Rate Before After (SM) After (NT) After (OP) After Ref [1] [1] A. Othman and A. Ross. Privacy of facial soft biometrics: Suppressing gender but retaining identity. In European Conference on Computer Vision Workshop, pages 682–696. Springer, 2014. M-COTS face matcher performance multi-subject comparisons Multi-subject comparisons Face matching performance
  41. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    43 Gender Privacy: An Ensemble of Semi Adversarial Networks for Confounding Arbitrary Gender Classifiers Vahid Mirjalili, Sebastian Raschka, and Arun Ross (2018) Gender Privacy: An Ensemble of Semi Adversarial Networks for Confounding Arbitrary Gender Classifiers. 9th IEEE International Conference on Biometrics: Theory, Applications, and Systems (BTAS 2018) Hypothesis space of gender classifiers G2 G1 G3 G4 G5 G2 G1 G3 G4 G5 Non-diverse: Ensemble SAN cannot generalize Diverse: Ensemble SAN can generalize Figure 1: Diversity in an ensemble SAN can be enhanced through its auxiliary gender classifiers (see Figure 2). When the auxiliary gender classifiers lack diversity, ensemble SAN cannot generalize well to arbitrary gender classifiers. 3.2. Diversity in Autoencoder Ensembles One of the key aspects of neural network ensembles is diversity among the individual network models [17]. Sev- eral techniques have been proposed in the literature for en- Figure 2: Architecture of the original SAN model [31]. Training Phase Evaluation Phase S1 S2 X Y1 Y2 Aux. G2 Aux. M2 S2 X Y Aux. G1 Aux. M1 S1 X Y Improvements to construct a more diverse set of SAN models for better generalizability via ensembling Figure 4: Face prototypes computed for each group of at- tribute labels. The abbreviations at the bottom of each im- age refer to the prototype attribute-classes, where Y=young, O=old, M=male, F=female, W=white, B=black. groups. For each group, we generate a prototype image, which is the average of all face images from the training dataset that belong to that group. Hence, given eight distinct categories or groups, eight different prototypes are com- puted. Next, an opposite-attribute prototype is defined by flipping one of the binary attribute labels of an input im- age. For example, if the input image had the attribute labels {young, female, white}, the opposite-gender prototype cho- sen for gender perturbation would be {young, male, white}. The face prototype for each group is shown in Figure 4, and is computed by aligning the corresponding faces onto the the average face shape of each group. The similarities and differences between the originally proposed SAN model and the ensemble SANs developed in this work are summarized below: • The autoencoder, auxiliary gender classifier, and aux- iliary face matcher architectures are similar to the orig- inal SAN model. • In contrast to the original SAN model, we construct face image prototypes to reduce alterations to non- target attributes such as age and race. Figure 5: An example illustrating the oversampling tech- nique used for enforcing diversity among SAN models in an ensemble. A: A random subset of samples are dupli- cated. B: Different Ensemble SANs (E1, E2, and E3) are trained on the CelebA-train dataset. SANs of the E1 en- semble are trained on the same dataset with different ran- dom seeds. In addition to using different random seeds, E2 SAN models are trained on datasets created by resampling the original dataset (duplicating a random subset of the im- ages). Finally, for E3, a random subset of black subjects was
  42. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    44 Gender Privacy: An Ensemble of Semi Adversarial Networks for Confounding Arbitrary Gender Classifiers Vahid Mirjalili, Sebastian Raschka, and Arun Ross (2018) Gender Privacy: An Ensemble of Semi Adversarial Networks for Confounding Arbitrary Gender Classifiers. 9th IEEE International Conference on Biometrics: Theory, Applications, and Systems (BTAS 2018) Hypothesis space of gender classifiers G2 G1 G3 G4 G5 G2 G1 G3 G4 G5 Non-diverse: Ensemble SAN cannot generalize Diverse: Ensemble SAN can generalize Figure 1: Diversity in an ensemble SAN can be enhanced through its auxiliary gender classifiers (see Figure 2). When the auxiliary gender classifiers lack diversity, ensemble SAN cannot generalize well to arbitrary gender classifiers. 3.2. Diversity in Autoencoder Ensembles One of the key aspects of neural network ensembles is diversity among the individual network models [17]. Sev- eral techniques have been proposed in the literature for en- hancing diversity among individual networks in an ensem- Figure 2: Architecture of the original SAN model [31]. Training Phase Evaluation Phase S1 S2 X Y1 Y2 Aux. G2 Aux. M2 S2 X Y Aux. G1 Aux. M1 S1 X Y Figure 4: Face prototypes computed for each group of at- tribute labels. The abbreviations at the bottom of each im- age refer to the prototype attribute-classes, where Y=young, O=old, M=male, F=female, W=white, B=black. groups. For each group, we generate a prototype image, which is the average of all face images from the training dataset that belong to that group. Hence, given eight distinct Improvements to construct a more diverse set of SAN models for better generalizability via ensembling
  43. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    45 SAN 1 I orig SAN 2 SAN n I 1 ‘ I 2 ‘ I n ‘ nal I 1 I 2 I 3 I 4 I 5 ‘ ‘ ‘ ‘ ‘ Gender Prob. P(Male): Matching Acc. w/ original: 80% 80% 98% 56% 98% 34% 14% 6% 97% 94% 91% (A) (B) I orig Improvements to better control the perturbations and enhance the removal of soft-biometric information FlowSAN: Privacy-enhancing Semi-Adversarial Networks to Confound Arbitrary Face-based Gender Classifiers Vahid Mirjalili, Sebastian Raschka, Arun Ross (2019)
 FlowSAN: Privacy-enhancing Semi-Adversarial Networks to Confound Arbitrary Face-based Gender Classifiers 
 IEEE Access 2019, 10.1109/ACCESS.2019.2924619
  44. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    46 AN models Yes Yes Mostly retained Net Yes Yes Mostly retained ormation Yes Yes Mostly retained - o r, - o t l e Convolutional Autoencoder I orig G M I' P enc Encoder Prototype (Same attribute) P dec Decoder Prototype (Same/Opposite attribute) Male vs. Female Genuine vs. Impostor Input Image Perturbed Image Subnetwork III Subnetwork II Subnetwork I Encoder Decoder + 1x1 Conv. D Pixelwise Dissimilarity Aux. Gender Classifier Aux. Face Matcher FIGURE 2: Architecture of the original SAN model [44] composed of three subnetworks: I: a convolutional autoen- coder [50], II: an auxiliary face matcher (M), and III: an auxiliary gender classifier (G). In addition, the unit D com- putes the pixelwise dissimilarity between input and perturbed images during model training. and the overall architecture is shown in Fig. 2. The SAN model leverages pre-computed face prototypes, which are average face images for each gender. SAN consists of three This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2924619, IEEE Access Mirjalili et al.: FlowSAN: Privacy-enhancing Semi-Adversarial Networks to Confound Arbitrary Face-based Gender Classifiers SAN 1 G 1 I orig M, D SAN n G n M, D SAN 2 G 2 M, D I 2 ‘ I 1 ‘ I n-1 ‘ I n ‘ FIGURE 5: An illustration of a FlowSAN model: n SAN models are trained sequentially using n auxiliary gender classifiers (G = {G1, G2, ..., Gn}), and a face matcher M that computes face representation vectors for both input image I and the output of SAN model. Both auxiliary face matcher and the dissimilarity unit (D) use the original image along with the output of their SAN base architecture FlowSAN FlowSAN: Privacy-enhancing Semi-Adversarial Networks to Confound Arbitrary Face-based Gender Classifiers
  45. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    47 PrivacyNet: Semi-Adversarial Networks for 
 Multi-attribute Selective Privacy Vahid Mirjalili, Sebastian Raschka, and Arun Ross (2019) PrivacyNet: Semi- Adversarial Networks for Multi-attribute Differential Privacy (Submitted)
  46. Sebastian Raschka International Summer School on Deep Learning, Gdansk 2019

    48 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, AUGUST 201X 4 Fig. 2. Schematic representation of the architecture of PrivacyNet for deriving perturbations to confound three attribute classifiers, gender, age, and race, while allowing biometric matchers to perform well. (A) Different components of the PrivacyNet: generator, source discriminator, attribute classifier, and the auxiliary face matcher; (B) cycle-consistency constraint applied to the generator by transforming an input face image to a target EE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, AUGUST 201X 4 g. 2. Schematic representation of the architecture of PrivacyNet for deriving perturbations to confound three attribute classifiers, gender, age, nd race, while allowing biometric matchers to perform well. (A) Different components of the PrivacyNet: generator, source discriminator, attribute assifier, and the auxiliary face matcher; (B) cycle-consistency constraint applied to the generator by transforming an input face image to a target Architecture Cycle-consistency constraint PrivacyNet: Semi-Adversarial Networks for 
 Multi-attribute Selective Privacy