Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Productionizing Big Data - stories from the tre...
Search
Roksolana
September 14, 2023
Technology
0
67
Productionizing Big Data - stories from the trenches
Presented at ScalaDays 2023 (Madrid, Spain)
Roksolana
September 14, 2023
Tweet
Share
More Decks by Roksolana
See All by Roksolana
Pain of engineering management
roksolanad
1
74
Alice and the return to the world of pods and higher-order functions
roksolanad
0
180
Modern data pipelines in AdTech - life in the trenches
roksolanad
1
290
Alice and travelling back in time
roksolanad
0
170
Big Data at AdTech
roksolanad
0
340
Alice and the Mad Hatter: Predict or not to predict
roksolanad
0
190
Alice in the world of machine learning
roksolanad
0
120
Alice and the lost pod: practical guide to Kubernetes in Scala
roksolanad
1
330
Scala meets Kubernetes
roksolanad
0
490
Other Decks in Technology
See All in Technology
ソフトウェアQAがハードウェアの人になったの
mineo_matsuya
3
210
AWS 怖い話 WAF編 @fillz_noh #AWSStartup #AWSStartup_Kansai
fillznoh
0
130
ClaudeCodeにキレない技術
gtnao
1
870
Figma Dev Mode MCP Serverを用いたUI開発
zoothezoo
0
230
shake-upを科学する
rsakata
7
1k
無理しない AI 活用サービス / #jazug
koudaiii
0
100
CDKコード品質UP!ナイスな自作コンストラクタを作るための便利インターフェース
harukasakihara
2
240
Talk to Someone At Delta Airlines™️ USA Contact Numbers
travelcarecenter
0
160
PHPからはじめるコンピュータアーキテクチャ / From Scripts to Silicon: A Journey Through the Layers of Computing
tomzoh
2
130
Rethinking Incident Response: Context-Aware AI in Practice
rrreeeyyy
2
940
伴走から自律へ: 形式知へと導くSREイネーブリングによる プロダクトチームの信頼性オーナーシップ向上 / SRE NEXT 2025
visional_engineering_and_design
3
460
OpenTelemetryセマンティック規約の恩恵とMackerel APMにおける活用例 / SRE NEXT 2025
mackerelio
3
2k
Featured
See All Featured
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
Git: the NoSQL Database
bkeepers
PRO
430
65k
Into the Great Unknown - MozCon
thekraken
40
1.9k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
750
Become a Pro
speakerdeck
PRO
29
5.4k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Designing for Performance
lara
610
69k
Practical Orchestrator
shlominoach
189
11k
It's Worth the Effort
3n
185
28k
Designing for humans not robots
tammielis
253
25k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Transcript
Productionizing big data - stories from the trenches
Roksolana Diachuk •Engineering manager at Captify •Women Who Code Kyiv
Data Engineering Lead •Speaker
AdTech methodologies deliver the right content at the right time
to the right consumer AdTech
None
You have your pipelines in production What’s next?
Types of issues • Low performance • Human errors •
Data source errors
Story #1. Unlucky query
Problem Drop 13 months of user profiles
Reporting
Problem 13 months hour=22042001
Loading mechanism loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P13M” val minTime = currentDay.minus(config.feedPeriod)
listFiles.filter(file => file.eventDateTime isAfter minTime)
Solution loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P1M” loader.ImpalaLoaderConfig.periodToLoad: “P13M” …
Story #2. Missing data
Data ingestion Data from Partner X Data costs attribution Extractor
Problem XX Advertiser ID, Language, XX Device Type, …, XX
Media Cost (USD) X Advertiser ID, Language, X Device Type, …, X Media Cost (USD)
Solution • Rename old columns • Reload data for the
week
Solution val colRegex: Regex = “””X (.+)“””.r val oldNewColumnsMapping =
df.schema.collect { case oldColdName@colRegex(pattern) => (oldColName.name, (“XX “ + pattern)) } oldNewColumnsMapping.foldLeft(df) { case (data, (oldName, newName)) => data.withColumnRenamed(oldName, newName) }
XX Advertiser ID, Language, XX Device Type, …, XX Media
Cost (USD) Solution
Story #3. Divide and conquer
Problem processing_time part-*.parquet filtering aggregations created part-*.parquet
• Slow processing • Large parquet files • Failing job
that consumes lots of resources Problem
• Write new partitioned state • Run downstream jobs with
smaller states • Generate seed partition column - xxhash64(fullUrl, domain) Solution
processing_time part-*.parquet created bucket=0 part-*.parquet part-*.parquet … bucket=9 part-*.parquet part-*.parquet
processing_time part-*.parquet Solution
Story #4. Catch the evolution train
Data organisation evolution
Problem • Missing columns from the source • Impala to
Databricks migration speed • Dependency with another team • Unhappy users
Log-level data Mapper Ingestor Transformer Data costs calculator Data costs
attribution
Data costs attribution Data costs attribution Data extractor Impala loader
Data costs attribution Data extractor Impala loader Data costs attribution
Solution XX Advertiser ID, Language, XX Device Type, …, XX
Partner Currency, XX CPM Fee (USD) XX Advertiser ID, Language, XX Device Type, …, XX Media Cost (USD) 26 columns 82 columns
Solution Data extractor New ingestion job
//final step is writing the data df.write .partitionBy(“event_date”, “event_hour”) .mode(SaveMode.Overwrite)
.parquet(dstPath) Solution
Why this solution doesn’t work data_feed clicks.csv.gz views.csv.gz activity.csv.gz event_date
clicks1.parquet clicks2.parquet
Impressions Clicks Conversions Attribution data source
Solution impressions clicks conversions clicks.csv.gz views.csv.gz activity.csv.gz
Story #5. Cleanup time
Corrupted data Data from Partner X Ingestor
Corrupted data Data from Partner X Ingestor IllegalArgumentException: Can't convert
value to BinaryType data type
Solution • Adjust pipeline • Reload data for 3 days
on S3 • Relaunch Databricks autoloader
Current solution impressions videoevents conversions impressions conversions Clicks clicks videoevents
Current solution impressions conversions clicks videoevents
Better solution impressions videoevents conversions impressions conversions clicks clicks videoevents
Conclusions
2. Observability is the key 4. Plan major changes carefully
1. Set up clear expectations with stakeholders Prevention mechanisms 3. Distribute data transformation load
2. Errors can be prevented 4. Data evolution is hard
1. Data setup is always changing Conclusions 3. There are multiple approaches with different tools
None
dead_ fl owers22 roksolana-d roksolanadiachuk roksolanad My contact info