Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Productionizing Big Data - stories from the tre...
Search
Roksolana
September 14, 2023
Technology
0
61
Productionizing Big Data - stories from the trenches
Presented at ScalaDays 2023 (Madrid, Spain)
Roksolana
September 14, 2023
Tweet
Share
More Decks by Roksolana
See All by Roksolana
Pain of engineering management
roksolanad
1
69
Alice and the return to the world of pods and higher-order functions
roksolanad
0
150
Modern data pipelines in AdTech - life in the trenches
roksolanad
1
270
Alice and travelling back in time
roksolanad
0
140
Big Data at AdTech
roksolanad
0
290
Alice and the Mad Hatter: Predict or not to predict
roksolanad
0
150
Alice in the world of machine learning
roksolanad
0
96
Alice and the lost pod: practical guide to Kubernetes in Scala
roksolanad
1
300
Scala meets Kubernetes
roksolanad
0
460
Other Decks in Technology
See All in Technology
Fanstaの1年を大解剖! 一人SREはどこまでできるのか!?
syossan27
2
180
Working as a Server-side Engineer at LY Corporation
lycorp_recruit_jp
0
350
メンタル面でもつよつよエンジニアになる/登壇資料(井田 献一朗)
hacobu
0
110
レンジャーシステムズ | 会社紹介(採用ピッチ)
rssytems
0
270
プロダクト開発を加速させるためのQA文化の築き方 / How to build QA culture to accelerate product development
mii3king
1
280
Yahoo! ズバトクにおけるフロントエンド開発
lycorptech_jp
PRO
0
100
ハイテク休憩
sat
PRO
2
180
LINEスキマニにおけるフロントエンド開発
lycorptech_jp
PRO
0
340
サイボウズフロントエンドエキスパートチームについて / FrontendExpert Team
cybozuinsideout
PRO
5
38k
マイクロサービスにおける容易なトランザクション管理に向けて
scalar
0
180
1等無人航空機操縦士一発試験 合格までの道のり ドローンミートアップ@大阪 2024/12/18
excdinc
0
180
普通のエンジニアがLaravelコアチームメンバーになるまで
avosalmon
0
120
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
347
20k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
111
49k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
Automating Front-end Workflow
addyosmani
1366
200k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Six Lessons from altMBA
skipperchong
27
3.5k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Visualization
eitanlees
146
15k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
KATA
mclloyd
29
14k
Designing for humans not robots
tammielis
250
25k
Transcript
Productionizing big data - stories from the trenches
Roksolana Diachuk •Engineering manager at Captify •Women Who Code Kyiv
Data Engineering Lead •Speaker
AdTech methodologies deliver the right content at the right time
to the right consumer AdTech
None
You have your pipelines in production What’s next?
Types of issues • Low performance • Human errors •
Data source errors
Story #1. Unlucky query
Problem Drop 13 months of user profiles
Reporting
Problem 13 months hour=22042001
Loading mechanism loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P13M” val minTime = currentDay.minus(config.feedPeriod)
listFiles.filter(file => file.eventDateTime isAfter minTime)
Solution loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P1M” loader.ImpalaLoaderConfig.periodToLoad: “P13M” …
Story #2. Missing data
Data ingestion Data from Partner X Data costs attribution Extractor
Problem XX Advertiser ID, Language, XX Device Type, …, XX
Media Cost (USD) X Advertiser ID, Language, X Device Type, …, X Media Cost (USD)
Solution • Rename old columns • Reload data for the
week
Solution val colRegex: Regex = “””X (.+)“””.r val oldNewColumnsMapping =
df.schema.collect { case oldColdName@colRegex(pattern) => (oldColName.name, (“XX “ + pattern)) } oldNewColumnsMapping.foldLeft(df) { case (data, (oldName, newName)) => data.withColumnRenamed(oldName, newName) }
XX Advertiser ID, Language, XX Device Type, …, XX Media
Cost (USD) Solution
Story #3. Divide and conquer
Problem processing_time part-*.parquet filtering aggregations created part-*.parquet
• Slow processing • Large parquet files • Failing job
that consumes lots of resources Problem
• Write new partitioned state • Run downstream jobs with
smaller states • Generate seed partition column - xxhash64(fullUrl, domain) Solution
processing_time part-*.parquet created bucket=0 part-*.parquet part-*.parquet … bucket=9 part-*.parquet part-*.parquet
processing_time part-*.parquet Solution
Story #4. Catch the evolution train
Data organisation evolution
Problem • Missing columns from the source • Impala to
Databricks migration speed • Dependency with another team • Unhappy users
Log-level data Mapper Ingestor Transformer Data costs calculator Data costs
attribution
Data costs attribution Data costs attribution Data extractor Impala loader
Data costs attribution Data extractor Impala loader Data costs attribution
Solution XX Advertiser ID, Language, XX Device Type, …, XX
Partner Currency, XX CPM Fee (USD) XX Advertiser ID, Language, XX Device Type, …, XX Media Cost (USD) 26 columns 82 columns
Solution Data extractor New ingestion job
//final step is writing the data df.write .partitionBy(“event_date”, “event_hour”) .mode(SaveMode.Overwrite)
.parquet(dstPath) Solution
Why this solution doesn’t work data_feed clicks.csv.gz views.csv.gz activity.csv.gz event_date
clicks1.parquet clicks2.parquet
Impressions Clicks Conversions Attribution data source
Solution impressions clicks conversions clicks.csv.gz views.csv.gz activity.csv.gz
Story #5. Cleanup time
Corrupted data Data from Partner X Ingestor
Corrupted data Data from Partner X Ingestor IllegalArgumentException: Can't convert
value to BinaryType data type
Solution • Adjust pipeline • Reload data for 3 days
on S3 • Relaunch Databricks autoloader
Current solution impressions videoevents conversions impressions conversions Clicks clicks videoevents
Current solution impressions conversions clicks videoevents
Better solution impressions videoevents conversions impressions conversions clicks clicks videoevents
Conclusions
2. Observability is the key 4. Plan major changes carefully
1. Set up clear expectations with stakeholders Prevention mechanisms 3. Distribute data transformation load
2. Errors can be prevented 4. Data evolution is hard
1. Data setup is always changing Conclusions 3. There are multiple approaches with different tools
None
dead_ fl owers22 roksolana-d roksolanadiachuk roksolanad My contact info