Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Productionizing Big Data - stories from the tre...
Search
Roksolana
September 14, 2023
Technology
0
65
Productionizing Big Data - stories from the trenches
Presented at ScalaDays 2023 (Madrid, Spain)
Roksolana
September 14, 2023
Tweet
Share
More Decks by Roksolana
See All by Roksolana
Pain of engineering management
roksolanad
1
73
Alice and the return to the world of pods and higher-order functions
roksolanad
0
180
Modern data pipelines in AdTech - life in the trenches
roksolanad
1
290
Alice and travelling back in time
roksolanad
0
160
Big Data at AdTech
roksolanad
0
330
Alice and the Mad Hatter: Predict or not to predict
roksolanad
0
180
Alice in the world of machine learning
roksolanad
0
110
Alice and the lost pod: practical guide to Kubernetes in Scala
roksolanad
1
330
Scala meets Kubernetes
roksolanad
0
490
Other Decks in Technology
See All in Technology
OSMnx Galleryの紹介
mopinfish
0
150
プラットフォームとしての Datadog / Datadog as Platforms
aoto
PRO
1
330
それでもぼくらは貢献をつづけるのだ(たぶん) @FOSS4GLT会#002
furukawayasuto
1
270
新卒から4年間、20年もののWebサービスと向き合って学んだソフトウェア考古学 - PHPカンファレンス新潟2025 / new graduate 4year software archeology
oguri
2
350
MCP で繋ぐ Figma とデザインシステム〜LLM を使った UI 実装のリアル〜
kimuson
2
1.3k
令和トラベルQAのAI活用
seigaitakahiro
0
520
Redmineの意外と知らない便利機能 (Redmine 6.0対応版)
vividtone
0
1.1k
金融システムをモダナイズするためのAmazon Elastic Kubernetes Service(EKS)ノウハウ大全
daitak
0
120
AIの電力問題を概観する
rmaruy
1
210
大手企業のAIツール導入の壁を越えて:サイバーエージェントのCursor活用戦略
gunta
11
1.8k
ソフトウェアは捨てやすく作ろう/Let's make software easy to discard
sanogemaru
10
5.8k
TypeScript と歩む OpenAPI の discriminator / OpenAPI discriminator with TypeScript
kaminashi
1
150
Featured
See All Featured
Music & Morning Musume
bryan
47
6.5k
Adopting Sorbet at Scale
ufuk
76
9.4k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.4k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
840
Balancing Empowerment & Direction
lara
1
84
Raft: Consensus for Rubyists
vanstee
137
7k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
A better future with KSS
kneath
239
17k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Writing Fast Ruby
sferik
628
61k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Transcript
Productionizing big data - stories from the trenches
Roksolana Diachuk •Engineering manager at Captify •Women Who Code Kyiv
Data Engineering Lead •Speaker
AdTech methodologies deliver the right content at the right time
to the right consumer AdTech
None
You have your pipelines in production What’s next?
Types of issues • Low performance • Human errors •
Data source errors
Story #1. Unlucky query
Problem Drop 13 months of user profiles
Reporting
Problem 13 months hour=22042001
Loading mechanism loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P13M” val minTime = currentDay.minus(config.feedPeriod)
listFiles.filter(file => file.eventDateTime isAfter minTime)
Solution loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P1M” loader.ImpalaLoaderConfig.periodToLoad: “P13M” …
Story #2. Missing data
Data ingestion Data from Partner X Data costs attribution Extractor
Problem XX Advertiser ID, Language, XX Device Type, …, XX
Media Cost (USD) X Advertiser ID, Language, X Device Type, …, X Media Cost (USD)
Solution • Rename old columns • Reload data for the
week
Solution val colRegex: Regex = “””X (.+)“””.r val oldNewColumnsMapping =
df.schema.collect { case oldColdName@colRegex(pattern) => (oldColName.name, (“XX “ + pattern)) } oldNewColumnsMapping.foldLeft(df) { case (data, (oldName, newName)) => data.withColumnRenamed(oldName, newName) }
XX Advertiser ID, Language, XX Device Type, …, XX Media
Cost (USD) Solution
Story #3. Divide and conquer
Problem processing_time part-*.parquet filtering aggregations created part-*.parquet
• Slow processing • Large parquet files • Failing job
that consumes lots of resources Problem
• Write new partitioned state • Run downstream jobs with
smaller states • Generate seed partition column - xxhash64(fullUrl, domain) Solution
processing_time part-*.parquet created bucket=0 part-*.parquet part-*.parquet … bucket=9 part-*.parquet part-*.parquet
processing_time part-*.parquet Solution
Story #4. Catch the evolution train
Data organisation evolution
Problem • Missing columns from the source • Impala to
Databricks migration speed • Dependency with another team • Unhappy users
Log-level data Mapper Ingestor Transformer Data costs calculator Data costs
attribution
Data costs attribution Data costs attribution Data extractor Impala loader
Data costs attribution Data extractor Impala loader Data costs attribution
Solution XX Advertiser ID, Language, XX Device Type, …, XX
Partner Currency, XX CPM Fee (USD) XX Advertiser ID, Language, XX Device Type, …, XX Media Cost (USD) 26 columns 82 columns
Solution Data extractor New ingestion job
//final step is writing the data df.write .partitionBy(“event_date”, “event_hour”) .mode(SaveMode.Overwrite)
.parquet(dstPath) Solution
Why this solution doesn’t work data_feed clicks.csv.gz views.csv.gz activity.csv.gz event_date
clicks1.parquet clicks2.parquet
Impressions Clicks Conversions Attribution data source
Solution impressions clicks conversions clicks.csv.gz views.csv.gz activity.csv.gz
Story #5. Cleanup time
Corrupted data Data from Partner X Ingestor
Corrupted data Data from Partner X Ingestor IllegalArgumentException: Can't convert
value to BinaryType data type
Solution • Adjust pipeline • Reload data for 3 days
on S3 • Relaunch Databricks autoloader
Current solution impressions videoevents conversions impressions conversions Clicks clicks videoevents
Current solution impressions conversions clicks videoevents
Better solution impressions videoevents conversions impressions conversions clicks clicks videoevents
Conclusions
2. Observability is the key 4. Plan major changes carefully
1. Set up clear expectations with stakeholders Prevention mechanisms 3. Distribute data transformation load
2. Errors can be prevented 4. Data evolution is hard
1. Data setup is always changing Conclusions 3. There are multiple approaches with different tools
None
dead_ fl owers22 roksolana-d roksolanadiachuk roksolanad My contact info