Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Productionizing Big Data - stories from the tre...
Search
Roksolana
September 14, 2023
Technology
0
64
Productionizing Big Data - stories from the trenches
Presented at ScalaDays 2023 (Madrid, Spain)
Roksolana
September 14, 2023
Tweet
Share
More Decks by Roksolana
See All by Roksolana
Pain of engineering management
roksolanad
1
73
Alice and the return to the world of pods and higher-order functions
roksolanad
0
170
Modern data pipelines in AdTech - life in the trenches
roksolanad
1
280
Alice and travelling back in time
roksolanad
0
150
Big Data at AdTech
roksolanad
0
320
Alice and the Mad Hatter: Predict or not to predict
roksolanad
0
170
Alice in the world of machine learning
roksolanad
0
110
Alice and the lost pod: practical guide to Kubernetes in Scala
roksolanad
1
320
Scala meets Kubernetes
roksolanad
0
480
Other Decks in Technology
See All in Technology
Amazon EKS Auto ModeでKubernetesの運用をシンプルにする
sshota0809
0
110
ソフトウェアプロジェクトの成功率が上がらない原因-「社会価値を考える」ということ-
ytanaka5569
0
130
Dapr For Java Developers SouJava 25
salaboy
1
130
OCI見積もり入門セミナー
oracle4engineer
PRO
0
120
OPENLOGI Company Profile
hr01
0
61k
Riverpod & Riverpod Generatorを利用して状態管理部分の処理を書き換えてみる簡単な事例紹介
fumiyasac0921
0
110
ルートユーザーの活用と管理を徹底的に深掘る
yuobayashi
6
720
Vision Language Modelを活用した メルカリの類似画像レコメンドの性能改善
yadayuki
9
1.2k
Symfony in 2025: Scaling to 0
fabpot
2
190
KCD Brazil '25: Enabling Developers with Dapr & Backstage
salaboy
1
120
AIエージェント完全に理解した
segavvy
4
260
Road to SRE NEXT@仙台 IVRyの組織の形とSLO運用の現状
abnoumaru
0
390
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
245
12k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
16
1.1k
GraphQLとの向き合い方2022年版
quramy
45
14k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
25k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Raft: Consensus for Rubyists
vanstee
137
6.8k
A better future with KSS
kneath
238
17k
Rails Girls Zürich Keynote
gr2m
94
13k
Documentation Writing (for coders)
carmenintech
69
4.7k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
2.9k
Transcript
Productionizing big data - stories from the trenches
Roksolana Diachuk •Engineering manager at Captify •Women Who Code Kyiv
Data Engineering Lead •Speaker
AdTech methodologies deliver the right content at the right time
to the right consumer AdTech
None
You have your pipelines in production What’s next?
Types of issues • Low performance • Human errors •
Data source errors
Story #1. Unlucky query
Problem Drop 13 months of user profiles
Reporting
Problem 13 months hour=22042001
Loading mechanism loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P13M” val minTime = currentDay.minus(config.feedPeriod)
listFiles.filter(file => file.eventDateTime isAfter minTime)
Solution loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P1M” loader.ImpalaLoaderConfig.periodToLoad: “P13M” …
Story #2. Missing data
Data ingestion Data from Partner X Data costs attribution Extractor
Problem XX Advertiser ID, Language, XX Device Type, …, XX
Media Cost (USD) X Advertiser ID, Language, X Device Type, …, X Media Cost (USD)
Solution • Rename old columns • Reload data for the
week
Solution val colRegex: Regex = “””X (.+)“””.r val oldNewColumnsMapping =
df.schema.collect { case oldColdName@colRegex(pattern) => (oldColName.name, (“XX “ + pattern)) } oldNewColumnsMapping.foldLeft(df) { case (data, (oldName, newName)) => data.withColumnRenamed(oldName, newName) }
XX Advertiser ID, Language, XX Device Type, …, XX Media
Cost (USD) Solution
Story #3. Divide and conquer
Problem processing_time part-*.parquet filtering aggregations created part-*.parquet
• Slow processing • Large parquet files • Failing job
that consumes lots of resources Problem
• Write new partitioned state • Run downstream jobs with
smaller states • Generate seed partition column - xxhash64(fullUrl, domain) Solution
processing_time part-*.parquet created bucket=0 part-*.parquet part-*.parquet … bucket=9 part-*.parquet part-*.parquet
processing_time part-*.parquet Solution
Story #4. Catch the evolution train
Data organisation evolution
Problem • Missing columns from the source • Impala to
Databricks migration speed • Dependency with another team • Unhappy users
Log-level data Mapper Ingestor Transformer Data costs calculator Data costs
attribution
Data costs attribution Data costs attribution Data extractor Impala loader
Data costs attribution Data extractor Impala loader Data costs attribution
Solution XX Advertiser ID, Language, XX Device Type, …, XX
Partner Currency, XX CPM Fee (USD) XX Advertiser ID, Language, XX Device Type, …, XX Media Cost (USD) 26 columns 82 columns
Solution Data extractor New ingestion job
//final step is writing the data df.write .partitionBy(“event_date”, “event_hour”) .mode(SaveMode.Overwrite)
.parquet(dstPath) Solution
Why this solution doesn’t work data_feed clicks.csv.gz views.csv.gz activity.csv.gz event_date
clicks1.parquet clicks2.parquet
Impressions Clicks Conversions Attribution data source
Solution impressions clicks conversions clicks.csv.gz views.csv.gz activity.csv.gz
Story #5. Cleanup time
Corrupted data Data from Partner X Ingestor
Corrupted data Data from Partner X Ingestor IllegalArgumentException: Can't convert
value to BinaryType data type
Solution • Adjust pipeline • Reload data for 3 days
on S3 • Relaunch Databricks autoloader
Current solution impressions videoevents conversions impressions conversions Clicks clicks videoevents
Current solution impressions conversions clicks videoevents
Better solution impressions videoevents conversions impressions conversions clicks clicks videoevents
Conclusions
2. Observability is the key 4. Plan major changes carefully
1. Set up clear expectations with stakeholders Prevention mechanisms 3. Distribute data transformation load
2. Errors can be prevented 4. Data evolution is hard
1. Data setup is always changing Conclusions 3. There are multiple approaches with different tools
None
dead_ fl owers22 roksolana-d roksolanadiachuk roksolanad My contact info