Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Productionizing Big Data - stories from the tre...
Search
Roksolana
September 14, 2023
Technology
0
66
Productionizing Big Data - stories from the trenches
Presented at ScalaDays 2023 (Madrid, Spain)
Roksolana
September 14, 2023
Tweet
Share
More Decks by Roksolana
See All by Roksolana
Pain of engineering management
roksolanad
1
74
Alice and the return to the world of pods and higher-order functions
roksolanad
0
180
Modern data pipelines in AdTech - life in the trenches
roksolanad
1
290
Alice and travelling back in time
roksolanad
0
170
Big Data at AdTech
roksolanad
0
340
Alice and the Mad Hatter: Predict or not to predict
roksolanad
0
180
Alice in the world of machine learning
roksolanad
0
110
Alice and the lost pod: practical guide to Kubernetes in Scala
roksolanad
1
330
Scala meets Kubernetes
roksolanad
0
490
Other Decks in Technology
See All in Technology
Snowflake Summit 2025 データエンジニアリング関連新機能紹介 / Snowflake Summit 2025 What's New about Data Engineering
tiltmax3
0
210
Model Mondays S2E02: Model Context Protocol
nitya
0
170
Amplifyとゼロからはじめた AIコーディング 成果と展望
mkdev10
1
350
活きてなかったデータを活かしてみた話 / Shirokane Kougyou vol 19
sansan_randd
1
400
DB 醬,嗨!哪泥嘎斯基?
line_developers_tw
PRO
0
1.1k
[TechNight #90-1] 本当に使える?ZDMの新機能を実践検証してみた
oracle4engineer
PRO
3
130
比起獨自升級 我更喜歡 DevOps 文化 <3
line_developers_tw
PRO
0
1.1k
20250623 Findy Lunch LT Brown
3150
0
720
AIエージェントの継続的改善のためオブザーバビリティ
pharma_x_tech
6
1.4k
実践! AIエージェント導入記
1mono2prod
0
130
本部長の代わりに提案書レビュー! KDDI営業が毎日使うAIエージェント「A-BOSS」開発秘話
minorun365
PRO
14
2.2k
Oracle Cloud Infrastructure:2025年6月度サービス・アップデート
oracle4engineer
PRO
1
130
Featured
See All Featured
Side Projects
sachag
455
42k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
790
A designer walks into a library…
pauljervisheath
206
24k
Designing for Performance
lara
609
69k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
The World Runs on Bad Software
bkeepers
PRO
68
11k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
Statistics for Hackers
jakevdp
799
220k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Transcript
Productionizing big data - stories from the trenches
Roksolana Diachuk •Engineering manager at Captify •Women Who Code Kyiv
Data Engineering Lead •Speaker
AdTech methodologies deliver the right content at the right time
to the right consumer AdTech
None
You have your pipelines in production What’s next?
Types of issues • Low performance • Human errors •
Data source errors
Story #1. Unlucky query
Problem Drop 13 months of user profiles
Reporting
Problem 13 months hour=22042001
Loading mechanism loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P13M” val minTime = currentDay.minus(config.feedPeriod)
listFiles.filter(file => file.eventDateTime isAfter minTime)
Solution loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P1M” loader.ImpalaLoaderConfig.periodToLoad: “P13M” …
Story #2. Missing data
Data ingestion Data from Partner X Data costs attribution Extractor
Problem XX Advertiser ID, Language, XX Device Type, …, XX
Media Cost (USD) X Advertiser ID, Language, X Device Type, …, X Media Cost (USD)
Solution • Rename old columns • Reload data for the
week
Solution val colRegex: Regex = “””X (.+)“””.r val oldNewColumnsMapping =
df.schema.collect { case oldColdName@colRegex(pattern) => (oldColName.name, (“XX “ + pattern)) } oldNewColumnsMapping.foldLeft(df) { case (data, (oldName, newName)) => data.withColumnRenamed(oldName, newName) }
XX Advertiser ID, Language, XX Device Type, …, XX Media
Cost (USD) Solution
Story #3. Divide and conquer
Problem processing_time part-*.parquet filtering aggregations created part-*.parquet
• Slow processing • Large parquet files • Failing job
that consumes lots of resources Problem
• Write new partitioned state • Run downstream jobs with
smaller states • Generate seed partition column - xxhash64(fullUrl, domain) Solution
processing_time part-*.parquet created bucket=0 part-*.parquet part-*.parquet … bucket=9 part-*.parquet part-*.parquet
processing_time part-*.parquet Solution
Story #4. Catch the evolution train
Data organisation evolution
Problem • Missing columns from the source • Impala to
Databricks migration speed • Dependency with another team • Unhappy users
Log-level data Mapper Ingestor Transformer Data costs calculator Data costs
attribution
Data costs attribution Data costs attribution Data extractor Impala loader
Data costs attribution Data extractor Impala loader Data costs attribution
Solution XX Advertiser ID, Language, XX Device Type, …, XX
Partner Currency, XX CPM Fee (USD) XX Advertiser ID, Language, XX Device Type, …, XX Media Cost (USD) 26 columns 82 columns
Solution Data extractor New ingestion job
//final step is writing the data df.write .partitionBy(“event_date”, “event_hour”) .mode(SaveMode.Overwrite)
.parquet(dstPath) Solution
Why this solution doesn’t work data_feed clicks.csv.gz views.csv.gz activity.csv.gz event_date
clicks1.parquet clicks2.parquet
Impressions Clicks Conversions Attribution data source
Solution impressions clicks conversions clicks.csv.gz views.csv.gz activity.csv.gz
Story #5. Cleanup time
Corrupted data Data from Partner X Ingestor
Corrupted data Data from Partner X Ingestor IllegalArgumentException: Can't convert
value to BinaryType data type
Solution • Adjust pipeline • Reload data for 3 days
on S3 • Relaunch Databricks autoloader
Current solution impressions videoevents conversions impressions conversions Clicks clicks videoevents
Current solution impressions conversions clicks videoevents
Better solution impressions videoevents conversions impressions conversions clicks clicks videoevents
Conclusions
2. Observability is the key 4. Plan major changes carefully
1. Set up clear expectations with stakeholders Prevention mechanisms 3. Distribute data transformation load
2. Errors can be prevented 4. Data evolution is hard
1. Data setup is always changing Conclusions 3. There are multiple approaches with different tools
None
dead_ fl owers22 roksolana-d roksolanadiachuk roksolanad My contact info