$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Productionizing Big Data - stories from the tre...
Search
Roksolana
September 14, 2023
Technology
0
76
Productionizing Big Data - stories from the trenches
Presented at ScalaDays 2023 (Madrid, Spain)
Roksolana
September 14, 2023
Tweet
Share
More Decks by Roksolana
See All by Roksolana
Pain of engineering management
roksolanad
1
92
Alice and the return to the world of pods and higher-order functions
roksolanad
0
190
Modern data pipelines in AdTech - life in the trenches
roksolanad
1
300
Alice and travelling back in time
roksolanad
0
170
Big Data at AdTech
roksolanad
0
360
Alice and the Mad Hatter: Predict or not to predict
roksolanad
0
200
Alice in the world of machine learning
roksolanad
0
120
Alice and the lost pod: practical guide to Kubernetes in Scala
roksolanad
1
350
Scala meets Kubernetes
roksolanad
0
520
Other Decks in Technology
See All in Technology
Next.js 16の新機能 Cache Components について
sutetotanuki
0
180
Building Serverless AI Memory with Mastra × AWS
vvatanabe
0
550
"人"が頑張るAI駆動開発
yokomachi
1
160
AWS re:Invent 2025~初参加の成果と学び~
kubomasataka
0
190
なぜ あなたはそんなに re:Invent に行くのか?
miu_crescent
PRO
0
210
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
SQLだけでマイグレーションしたい!
makki_d
0
1.2k
障害対応訓練、その前に
coconala_engineer
0
200
まだ間に合う! Agentic AI on AWSの現在地をやさしく一挙おさらい
minorun365
17
2.7k
アプリにAIを正しく組み込むための アーキテクチャ── 国産LLMの現実と実践
kohju
0
220
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
1
400
LayerX QA Night#1
koyaman2
0
260
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.8k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
49
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
190
Building the Perfect Custom Keyboard
takai
1
660
Chasing Engaging Ingredients in Design
codingconduct
0
84
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Context Engineering - Making Every Token Count
addyosmani
9
550
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
210
Transcript
Productionizing big data - stories from the trenches
Roksolana Diachuk •Engineering manager at Captify •Women Who Code Kyiv
Data Engineering Lead •Speaker
AdTech methodologies deliver the right content at the right time
to the right consumer AdTech
None
You have your pipelines in production What’s next?
Types of issues • Low performance • Human errors •
Data source errors
Story #1. Unlucky query
Problem Drop 13 months of user profiles
Reporting
Problem 13 months hour=22042001
Loading mechanism loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P13M” val minTime = currentDay.minus(config.feedPeriod)
listFiles.filter(file => file.eventDateTime isAfter minTime)
Solution loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P1M” loader.ImpalaLoaderConfig.periodToLoad: “P13M” …
Story #2. Missing data
Data ingestion Data from Partner X Data costs attribution Extractor
Problem XX Advertiser ID, Language, XX Device Type, …, XX
Media Cost (USD) X Advertiser ID, Language, X Device Type, …, X Media Cost (USD)
Solution • Rename old columns • Reload data for the
week
Solution val colRegex: Regex = “””X (.+)“””.r val oldNewColumnsMapping =
df.schema.collect { case oldColdName@colRegex(pattern) => (oldColName.name, (“XX “ + pattern)) } oldNewColumnsMapping.foldLeft(df) { case (data, (oldName, newName)) => data.withColumnRenamed(oldName, newName) }
XX Advertiser ID, Language, XX Device Type, …, XX Media
Cost (USD) Solution
Story #3. Divide and conquer
Problem processing_time part-*.parquet filtering aggregations created part-*.parquet
• Slow processing • Large parquet files • Failing job
that consumes lots of resources Problem
• Write new partitioned state • Run downstream jobs with
smaller states • Generate seed partition column - xxhash64(fullUrl, domain) Solution
processing_time part-*.parquet created bucket=0 part-*.parquet part-*.parquet … bucket=9 part-*.parquet part-*.parquet
processing_time part-*.parquet Solution
Story #4. Catch the evolution train
Data organisation evolution
Problem • Missing columns from the source • Impala to
Databricks migration speed • Dependency with another team • Unhappy users
Log-level data Mapper Ingestor Transformer Data costs calculator Data costs
attribution
Data costs attribution Data costs attribution Data extractor Impala loader
Data costs attribution Data extractor Impala loader Data costs attribution
Solution XX Advertiser ID, Language, XX Device Type, …, XX
Partner Currency, XX CPM Fee (USD) XX Advertiser ID, Language, XX Device Type, …, XX Media Cost (USD) 26 columns 82 columns
Solution Data extractor New ingestion job
//final step is writing the data df.write .partitionBy(“event_date”, “event_hour”) .mode(SaveMode.Overwrite)
.parquet(dstPath) Solution
Why this solution doesn’t work data_feed clicks.csv.gz views.csv.gz activity.csv.gz event_date
clicks1.parquet clicks2.parquet
Impressions Clicks Conversions Attribution data source
Solution impressions clicks conversions clicks.csv.gz views.csv.gz activity.csv.gz
Story #5. Cleanup time
Corrupted data Data from Partner X Ingestor
Corrupted data Data from Partner X Ingestor IllegalArgumentException: Can't convert
value to BinaryType data type
Solution • Adjust pipeline • Reload data for 3 days
on S3 • Relaunch Databricks autoloader
Current solution impressions videoevents conversions impressions conversions Clicks clicks videoevents
Current solution impressions conversions clicks videoevents
Better solution impressions videoevents conversions impressions conversions clicks clicks videoevents
Conclusions
2. Observability is the key 4. Plan major changes carefully
1. Set up clear expectations with stakeholders Prevention mechanisms 3. Distribute data transformation load
2. Errors can be prevented 4. Data evolution is hard
1. Data setup is always changing Conclusions 3. There are multiple approaches with different tools
None
dead_ fl owers22 roksolana-d roksolanadiachuk roksolanad My contact info