Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Productionizing Big Data - stories from the tre...
Search
Roksolana
September 14, 2023
Technology
0
71
Productionizing Big Data - stories from the trenches
Presented at ScalaDays 2023 (Madrid, Spain)
Roksolana
September 14, 2023
Tweet
Share
More Decks by Roksolana
See All by Roksolana
Pain of engineering management
roksolanad
1
85
Alice and the return to the world of pods and higher-order functions
roksolanad
0
190
Modern data pipelines in AdTech - life in the trenches
roksolanad
1
300
Alice and travelling back in time
roksolanad
0
170
Big Data at AdTech
roksolanad
0
350
Alice and the Mad Hatter: Predict or not to predict
roksolanad
0
200
Alice in the world of machine learning
roksolanad
0
120
Alice and the lost pod: practical guide to Kubernetes in Scala
roksolanad
1
340
Scala meets Kubernetes
roksolanad
0
510
Other Decks in Technology
See All in Technology
useEffectってなんで非推奨みたいなこと言われてるの?
maguroalternative
9
6.2k
“決まらない”NSM設計への処方箋 〜ビットキーにおける現実的な指標デザイン事例〜 / A Prescription for "Stuck" NSM Design: Bitkey’s Practical Case Study
bitkey
PRO
1
290
Active Directory 勉強会 第 6 回目 Active Directory セキュリティについて学ぶ回
eurekaberry
16
5.9k
Capture Checking / Separation Checking 入門
tanishiking
0
110
インフラ室事例集
mixi_engineers
PRO
2
220
Symfony AI in Action
el_stoffel
2
350
MySQL AIとMySQL Studioを使ってみよう
ikomachi226
0
130
セキュリティAIエージェントの現在と未来 / PSS #2 Takumi Session
flatt_security
3
1.3k
MCP・A2A概要 〜Google Cloudで構築するなら〜
shukob
0
150
20251127 BigQueryリモート関数で作る、お手軽AIバッチ実行環境
daimatz
0
420
Master Dataグループ紹介資料
sansan33
PRO
1
4k
一億総業務改善を支える社内AIエージェント基盤の要諦
yukukotani
8
2.8k
Featured
See All Featured
Scaling GitHub
holman
464
140k
Music & Morning Musume
bryan
46
7k
Documentation Writing (for coders)
carmenintech
76
5.2k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Balancing Empowerment & Direction
lara
5
780
How to Think Like a Performance Engineer
csswizardry
28
2.3k
RailsConf 2023
tenderlove
30
1.3k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
370
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
A designer walks into a library…
pauljervisheath
210
24k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Transcript
Productionizing big data - stories from the trenches
Roksolana Diachuk •Engineering manager at Captify •Women Who Code Kyiv
Data Engineering Lead •Speaker
AdTech methodologies deliver the right content at the right time
to the right consumer AdTech
None
You have your pipelines in production What’s next?
Types of issues • Low performance • Human errors •
Data source errors
Story #1. Unlucky query
Problem Drop 13 months of user profiles
Reporting
Problem 13 months hour=22042001
Loading mechanism loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P13M” val minTime = currentDay.minus(config.feedPeriod)
listFiles.filter(file => file.eventDateTime isAfter minTime)
Solution loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P1M” loader.ImpalaLoaderConfig.periodToLoad: “P13M” …
Story #2. Missing data
Data ingestion Data from Partner X Data costs attribution Extractor
Problem XX Advertiser ID, Language, XX Device Type, …, XX
Media Cost (USD) X Advertiser ID, Language, X Device Type, …, X Media Cost (USD)
Solution • Rename old columns • Reload data for the
week
Solution val colRegex: Regex = “””X (.+)“””.r val oldNewColumnsMapping =
df.schema.collect { case oldColdName@colRegex(pattern) => (oldColName.name, (“XX “ + pattern)) } oldNewColumnsMapping.foldLeft(df) { case (data, (oldName, newName)) => data.withColumnRenamed(oldName, newName) }
XX Advertiser ID, Language, XX Device Type, …, XX Media
Cost (USD) Solution
Story #3. Divide and conquer
Problem processing_time part-*.parquet filtering aggregations created part-*.parquet
• Slow processing • Large parquet files • Failing job
that consumes lots of resources Problem
• Write new partitioned state • Run downstream jobs with
smaller states • Generate seed partition column - xxhash64(fullUrl, domain) Solution
processing_time part-*.parquet created bucket=0 part-*.parquet part-*.parquet … bucket=9 part-*.parquet part-*.parquet
processing_time part-*.parquet Solution
Story #4. Catch the evolution train
Data organisation evolution
Problem • Missing columns from the source • Impala to
Databricks migration speed • Dependency with another team • Unhappy users
Log-level data Mapper Ingestor Transformer Data costs calculator Data costs
attribution
Data costs attribution Data costs attribution Data extractor Impala loader
Data costs attribution Data extractor Impala loader Data costs attribution
Solution XX Advertiser ID, Language, XX Device Type, …, XX
Partner Currency, XX CPM Fee (USD) XX Advertiser ID, Language, XX Device Type, …, XX Media Cost (USD) 26 columns 82 columns
Solution Data extractor New ingestion job
//final step is writing the data df.write .partitionBy(“event_date”, “event_hour”) .mode(SaveMode.Overwrite)
.parquet(dstPath) Solution
Why this solution doesn’t work data_feed clicks.csv.gz views.csv.gz activity.csv.gz event_date
clicks1.parquet clicks2.parquet
Impressions Clicks Conversions Attribution data source
Solution impressions clicks conversions clicks.csv.gz views.csv.gz activity.csv.gz
Story #5. Cleanup time
Corrupted data Data from Partner X Ingestor
Corrupted data Data from Partner X Ingestor IllegalArgumentException: Can't convert
value to BinaryType data type
Solution • Adjust pipeline • Reload data for 3 days
on S3 • Relaunch Databricks autoloader
Current solution impressions videoevents conversions impressions conversions Clicks clicks videoevents
Current solution impressions conversions clicks videoevents
Better solution impressions videoevents conversions impressions conversions clicks clicks videoevents
Conclusions
2. Observability is the key 4. Plan major changes carefully
1. Set up clear expectations with stakeholders Prevention mechanisms 3. Distribute data transformation load
2. Errors can be prevented 4. Data evolution is hard
1. Data setup is always changing Conclusions 3. There are multiple approaches with different tools
None
dead_ fl owers22 roksolana-d roksolanadiachuk roksolanad My contact info