Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Productionizing Big Data - stories from the tre...
Search
Roksolana
September 14, 2023
Technology
0
64
Productionizing Big Data - stories from the trenches
Presented at ScalaDays 2023 (Madrid, Spain)
Roksolana
September 14, 2023
Tweet
Share
More Decks by Roksolana
See All by Roksolana
Pain of engineering management
roksolanad
1
73
Alice and the return to the world of pods and higher-order functions
roksolanad
0
170
Modern data pipelines in AdTech - life in the trenches
roksolanad
1
280
Alice and travelling back in time
roksolanad
0
150
Big Data at AdTech
roksolanad
0
320
Alice and the Mad Hatter: Predict or not to predict
roksolanad
0
170
Alice in the world of machine learning
roksolanad
0
110
Alice and the lost pod: practical guide to Kubernetes in Scala
roksolanad
1
320
Scala meets Kubernetes
roksolanad
0
480
Other Decks in Technology
See All in Technology
バクラクの認証基盤の成長と現在地 / bakuraku-authn-platform
convto
1
540
開発視点でAWS Signerを考えてみよう!! ~コード署名のその先へ~
masakiokuda
3
170
AWSの新機能検証をやる時こそ、Amazon Qでプロンプトエンジニアリングを駆使しよう
duelist2020jp
1
220
CloudWatch 大好きなSAが語る CloudWatch キホンのキ
o11yfes2023
0
180
はじめてのSDET / My first challenge as a SDET
bun913
1
250
Recap of Next - Google Cloud で実践する クラウドネイティブ最前線 / The Frontlines of Cloud-Native with Insights from Google Cloud
aoto
PRO
1
100
品質文化を支える小さいクロスファンクショナルなチーム / Cross-functional teams fostering quality culture
toma_sm
0
110
Cross Data Platforms Meetup LT 20250422
tarotaro0129
1
590
アジャイル脅威モデリング#1(脅威モデリングナイト#8)
masakane55
3
200
食べログが挑む!飲食店ネット予約システムで自動テスト無双して手動テストゼロを実現する戦略
hagevvashi
3
420
Рекомендации с нуля: как мы в Lamoda превратили главную страницу в ключевую точку входа для персонализированного шоппинга. Данил Комаров, Data Scientist, Lamoda Tech
lamodatech
0
720
Spring Bootで実装とインフラをこれでもかと分離するための試み
shintanimoto
7
820
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
245
12k
A Modern Web Designer's Workflow
chriscoyier
693
190k
It's Worth the Effort
3n
184
28k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
How to Think Like a Performance Engineer
csswizardry
23
1.5k
For a Future-Friendly Web
brad_frost
176
9.7k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Being A Developer After 40
akosma
91
590k
Into the Great Unknown - MozCon
thekraken
37
1.7k
A Tale of Four Properties
chriscoyier
158
23k
Designing for humans not robots
tammielis
252
25k
Transcript
Productionizing big data - stories from the trenches
Roksolana Diachuk •Engineering manager at Captify •Women Who Code Kyiv
Data Engineering Lead •Speaker
AdTech methodologies deliver the right content at the right time
to the right consumer AdTech
None
You have your pipelines in production What’s next?
Types of issues • Low performance • Human errors •
Data source errors
Story #1. Unlucky query
Problem Drop 13 months of user profiles
Reporting
Problem 13 months hour=22042001
Loading mechanism loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P13M” val minTime = currentDay.minus(config.feedPeriod)
listFiles.filter(file => file.eventDateTime isAfter minTime)
Solution loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P1M” loader.ImpalaLoaderConfig.periodToLoad: “P13M” …
Story #2. Missing data
Data ingestion Data from Partner X Data costs attribution Extractor
Problem XX Advertiser ID, Language, XX Device Type, …, XX
Media Cost (USD) X Advertiser ID, Language, X Device Type, …, X Media Cost (USD)
Solution • Rename old columns • Reload data for the
week
Solution val colRegex: Regex = “””X (.+)“””.r val oldNewColumnsMapping =
df.schema.collect { case oldColdName@colRegex(pattern) => (oldColName.name, (“XX “ + pattern)) } oldNewColumnsMapping.foldLeft(df) { case (data, (oldName, newName)) => data.withColumnRenamed(oldName, newName) }
XX Advertiser ID, Language, XX Device Type, …, XX Media
Cost (USD) Solution
Story #3. Divide and conquer
Problem processing_time part-*.parquet filtering aggregations created part-*.parquet
• Slow processing • Large parquet files • Failing job
that consumes lots of resources Problem
• Write new partitioned state • Run downstream jobs with
smaller states • Generate seed partition column - xxhash64(fullUrl, domain) Solution
processing_time part-*.parquet created bucket=0 part-*.parquet part-*.parquet … bucket=9 part-*.parquet part-*.parquet
processing_time part-*.parquet Solution
Story #4. Catch the evolution train
Data organisation evolution
Problem • Missing columns from the source • Impala to
Databricks migration speed • Dependency with another team • Unhappy users
Log-level data Mapper Ingestor Transformer Data costs calculator Data costs
attribution
Data costs attribution Data costs attribution Data extractor Impala loader
Data costs attribution Data extractor Impala loader Data costs attribution
Solution XX Advertiser ID, Language, XX Device Type, …, XX
Partner Currency, XX CPM Fee (USD) XX Advertiser ID, Language, XX Device Type, …, XX Media Cost (USD) 26 columns 82 columns
Solution Data extractor New ingestion job
//final step is writing the data df.write .partitionBy(“event_date”, “event_hour”) .mode(SaveMode.Overwrite)
.parquet(dstPath) Solution
Why this solution doesn’t work data_feed clicks.csv.gz views.csv.gz activity.csv.gz event_date
clicks1.parquet clicks2.parquet
Impressions Clicks Conversions Attribution data source
Solution impressions clicks conversions clicks.csv.gz views.csv.gz activity.csv.gz
Story #5. Cleanup time
Corrupted data Data from Partner X Ingestor
Corrupted data Data from Partner X Ingestor IllegalArgumentException: Can't convert
value to BinaryType data type
Solution • Adjust pipeline • Reload data for 3 days
on S3 • Relaunch Databricks autoloader
Current solution impressions videoevents conversions impressions conversions Clicks clicks videoevents
Current solution impressions conversions clicks videoevents
Better solution impressions videoevents conversions impressions conversions clicks clicks videoevents
Conclusions
2. Observability is the key 4. Plan major changes carefully
1. Set up clear expectations with stakeholders Prevention mechanisms 3. Distribute data transformation load
2. Errors can be prevented 4. Data evolution is hard
1. Data setup is always changing Conclusions 3. There are multiple approaches with different tools
None
dead_ fl owers22 roksolana-d roksolanadiachuk roksolanad My contact info