Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Forecast Getting Start
Search
貞松政史
October 11, 2019
Technology
0
1.5k
Amazon Forecast Getting Start
2019.10.11 DevelopersIO 2019 in Osaka
貞松政史
October 11, 2019
Tweet
Share
More Decks by 貞松政史
See All by 貞松政史
Amazon Forecast亡き今、我々がマネージドサービスに頼らず時系列予測を実行する方法
sadynitro
0
260
今日のハイライトをシステマティックに
sadynitro
1
40
はじめてのレコメンド〜Amazon Personalizeを使った推薦システム超超超入門〜
sadynitro
1
1k
予知保全利用を目指した外観検査AIの開発 〜画像処理AIを用いた外観画像に対する異常検知〜
sadynitro
0
590
20230904_GoogleCloudNext23_Recap_AI_ML
sadynitro
0
710
Foundation Model全盛時代を生きるAI/MLエンジニアの生存戦略
sadynitro
0
810
Amazon SageMakerが存在しない世界線 のAWS上で実現する機械学習基盤
sadynitro
0
170
Amazon SageMakerが存在しない世界線のAWS上で実現する機械学習基盤
sadynitro
0
1.6k
みんな大好き強化学習
sadynitro
0
1k
Other Decks in Technology
See All in Technology
re:Invent 2024 Innovation Talks(NET201)で語られた大切なこと
shotashiratori
0
320
Opcodeを読んでいたら何故かphp-srcを読んでいた話
murashotaro
0
320
20241218_今年はSLI/SLOの導入を頑張ってました!
zepprix
0
100
[Ruby] Develop a Morse Code Learning Gem & Beep from Strings
oguressive
1
190
宇宙ベンチャーにおける最近の情シス取り組みについて
axelmizu
0
120
Qiita埋め込み用スライド
naoki_0531
0
5.3k
DUSt3R, MASt3R, MASt3R-SfM にみる3D基盤モデル
spatial_ai_network
2
270
多領域インシデントマネジメントへの挑戦:ハードウェアとソフトウェアの融合が生む課題/Challenge to multidisciplinary incident management: Issues created by the fusion of hardware and software
bitkey
PRO
2
120
KnowledgeBaseDocuments APIでベクトルインデックス管理を自動化する
iidaxs
1
280
非機能品質を作り込むための実践アーキテクチャ
knih
5
1.6k
JVM(JavaVM)の性能分析者観点で探るInstanaの可能性
instanautsjp
0
120
AWS re:Invent 2024で発表された コードを書く開発者向け機能について
maruto
0
210
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.4k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.7k
A Philosophy of Restraint
colly
203
16k
A designer walks into a library…
pauljervisheath
205
24k
Adopting Sorbet at Scale
ufuk
73
9.1k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
The Language of Interfaces
destraynor
154
24k
How to train your dragon (web standard)
notwaldorf
88
5.7k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Building Your Own Lightsaber
phodgson
103
6.1k
Optimizing for Happiness
mojombo
376
70k
Transcript
みんな⼤好き時系列予測 〜Amazon Forecastで時系列予測やってみた〜 データアナリティクス事業本部 インテグレーション部 貞松 政史
スライドは後で⼊⼿することが出来ますので 発表中の内容をメモする必要はありません。 写真撮影をする場合は フラッシュ・シャッター⾳が出ないようにご配慮ください Attention
3 ⾃⼰紹介 • ⽒名 • 貞松 政史 (サダマツ マサシ) •
所属 • データアナリティクス事業本部 • インテグレーション部 開発チーム • 岡⼭オフィス勤務 •好きなAWSサービス • SageMaker • Lambda • Forecast ← new!
4 本セッションのゴール Amazon Forecast だいたいわかった ü Amazon Forecastの概要 ü コンソール上での操作⼿順
ü なんとなくの活⽤イメージ
5 本セッションで話さないこと 時系列予測の理論的な(深い)話 がっつりシステムに組み込む話
6 おしながき 1. Amazon Forecastとは 2. 時系列予測の基礎 3. コンソール上でのForecastの操作⼿順 4.
オープンデータを使った使⽤例
7 Amazon Forecastとは 1. Amazon Forecastとは 2. 時系列予測の基礎 3. コンソール上でのForecastの操作⼿順
4. オープンデータを使った使⽤例
8 Amazon Forecast とは 機械学習の経験なしで使⽤できる Amazon.comと同じテクノロジーに 基づいた正確な時系列予測サービス
9 で、何ができるの︖ ü 予測したい数値を含む時系列データをインポート ü 時系列予測のアルゴリズムを選択して学習を実⾏ (AutoMLを利⽤すればアルゴリズムの選択も不要︕) ü 学習済みモデル(予測⼦)を⽤いて予測を作成 これだけで時系列予測ができちゃう
10 Forecastのメリット データの収集 データの前処理 学習アルゴリズムの実装 学習済みモデルの性能検証 予測の可視化 通常の時系列予測のプロセス ⾃前で準備・実装
11 Forecastのメリット データの収集 データの前処理 学習アルゴリズムの実装 学習済みモデルの性能検証 予測の可視化 Forecastを利⽤した時系列予測のプロセス ⾃前で準備 Forecastの機能
12 Forecastの活⽤領域 • ⼩売の需要予測 • 在庫予測 • 収益・売上・キャッシュフローの予測 • 従業員・労働⼒の計画
• ウェブトラフィックの⾒積 • Amazon EC2のキャパシティ予測 etc…
13 Forecastの利⽤⽅法 • コンソール上で使⽤ ← 今回はこれ • AWS CLIで使⽤ •
Jupyter Notebookで使⽤ • AWS SDKで使⽤ (for Python, for Java など)
14 時系列予測の基礎 1. Amazon Forecastとは 2. 時系列予測の基礎 3. コンソール上でのForecastの操作⼿順 4.
オープンデータを使った使⽤例
15 時系列予測とは
時間的な連続性を持つ過去の実績データから未来の数値・傾向を予測する ? ? ?
16 どうやって予測するのか 0 2 4 6 8 10 12 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 value 0 10 20 30 40 50 60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 value temp 予測対象データ⾃体の傾向 季節変動・トレンド →その他外部要因(周辺環境の変化、世界情勢)など 古典的な統計⼿法や機械学習を適⽤することで予測
17 コンソール上でのForecastの操作⼿順 1. Amazon Forecastとは 2. 時系列予測の基礎 3. コンソール上でのForecastの操作⼿順 4.
オープンデータを使った使⽤例
18 Forecastの構成要素 データセットグループ データセット(必須) TARGET_TIME_SERIES データセット(任意) RELATED_TIME_SERIES データセット(任意) ITEM_METADATA 予測⼦(予測⽤の学習済みモデル)
予測
19 コンソール上でのForecastの操作⼿順 データセットグループ作成 データセット作成 データインポート 予測⼦の作成 予測の作成 予測の可視化
20 サンプルデータ http://archive.ics.uci.edu/ml UCI Machine Learning で公開されている電⼒利⽤量データ
21 データセットグループの作成 トップページ → Create dataset group
22 データセットグループの作成 データセットグループ名とドメインを⼊⼒
23 Forecast domain • RETAIL : ⼩売の需要予測 • INVENTORY_PLANNING :
サプライチェーンと在庫の計画 • EC2 CAPACITY : Amazon EC2 キャパシティの予測 • WORK_FORCE : 従業員の計画 • WEB_TRAFFIC : 今後のウェブトラフィックの⾒積もり • METRICS : 収益およびキャッシュフローなどの予測メトリクス • CUSTOM : その他すべての時系列予測のタイプ
24 データセットの作成 • データセット名 • データの時間刻み • スキーマ定義 • 必須のスキーマ
⁻ item_id ⁻ timestamp ⁻ target_value • 任意のスキーマ
25 時系列データの時間刻み 選択可能な時間刻みの単位 • minutes : 分 • hour :
時間 • day : ⽇ • week : 週 • month : ⽉ • year : 年
26 データインポート • データセットインポート名 • タイムスタンプフォーマット ⁻ yyyy-MM-dd HH:mm:ss ⁻
yyyy-MM-dd • IAMロール(S3のRead) • インポートするデータの場所 ⁻ S3バケット上のパス
27 予測⼦の作成
28 予測⼦の作成 • 予測⼦名 • 予測範囲(期間) • 予測の時間刻み • 予測アルゴリズムの選択
⁻ AutoML(⾃動選択) ⁻ Manual(⼿動選択)
29 予測⼦の作成 Forecastで使⽤可能な時系列予測アルゴリズム • ARIMA : ⾃⼰回帰和分移動平均 • DeepAR+ :
再帰型ニューラルネットワーク (RNN) を使⽤してスカ ラー (1次元) 時系列を予測するための、教師あり学習アルゴリズム • ETS : 指数平滑法 • NPTS : ノンパラメトリック時系列 • Prophet : 局所的なベイズ構造時系列モデル
30 予測⼦の作成 • Forecast dimensions • Backtest window ⁻ Number
of windows ⁻ Offset • Advanced configutations ⁻ ハイパーパラメータ設定など
31 作成した予測⼦の確認
32 作成した予測⼦の確認
33 作成した予測⼦の確認 平均平⽅⼆乗誤差 (Root Mean Squared Error, RMSE) 外れ値 (⼤きなズレ)
を より⼤きな誤差として扱う -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 値が⼩さいほど良い
34 作成した予測⼦の確認 重み付けされた分位損失 (weighted Quantile Loss) 値が⼩さいほど良い
35 予測の作成
36 予測の作成 予測名と予測⼦を⼊⼒
37 予測の可視化 27
38 予測の可視化 27
39 予測のエクスポート
40 予測のエクスポート • 予測エクスポート名 • 出⼒する予測結果 • IAM(S3 Write) •
出⼒先のS3バケットのパス
41 予測のエクスポート 指定したS3バケットのパスにファイル出⼒ ←予測結果データが ⼊ったCSVファイル
42 予測のエクスポート 以下の列項⽬を含む • item_id • date • p10, p50,
p90
43 ユースケース 1. Amazon Forecastとは 2. 時系列予測の基礎 3. コンソール上でのForecastの操作⼿順 4.
オープンデータを使った使⽤例
44 福岡市のインフルエンザ報告数 https://ckan.open-governmentdata.org/dataset/influenza401307fukuoka
45 データ仕様 データ期間︓2015年7⽉〜2019年8⽉(1週間刻み)
46 データの前処理 組み合わせて item_idに 年と週番号を週頭の 年⽉⽇に変換して timestampに そのまま target_valueに
47 データの前処理結果 item_id, timestamp, target_valueを持つデータに変換完了 item_idが⽇本語の値 → 問題なし ※但しファイルの⽂字コードがUTF-8になっていること
48 ここからはForcastの出番 あとは Forecast におまかせ︕
49 予測の可視化 ↑⽇本語のitem_id
50 予測の可視化
51 Bless you. インフルエンザには気をつけましょう
まとめ
53 まとめ Amazon Forecastは機械学習の経験が無くても 使⽤可能な時系列予測サービス データの収集・前処理さえしておけばGUI上で ポチポチするだけで時系列予測ができる 幾つかの制限・課題はあるものの既に時系列データを 蓄積している幅広い分野で活⽤できる可能性がある
54 結論 Amazon Forecast はいいぞ
55