Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Weight Poisoning Attacks on Pre-trained Models
Search
Scatter Lab Inc.
August 14, 2020
Research
0
2.2k
Weight Poisoning Attacks on Pre-trained Models
Scatter Lab Inc.
August 14, 2020
Tweet
Share
More Decks by Scatter Lab Inc.
See All by Scatter Lab Inc.
zeta introduction
scatterlab
0
1.7k
SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
scatterlab
0
4k
Adversarial Filters of Dataset Biases
scatterlab
0
2.2k
Sparse, Dense, and Attentional Representations for Text Retrieval
scatterlab
0
2.3k
Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval
scatterlab
0
2.5k
Beyond Accuracy: Behavioral Testing of NLP Models with CheckList
scatterlab
0
2.3k
Open-Retrieval Conversational Question Answering
scatterlab
0
2.3k
What Can Neural Networks Reason About?
scatterlab
0
2.2k
Exploring the Limits of Transfer Learning with Unified Text-to-Text Transformer
scatterlab
0
2.2k
Other Decks in Research
See All in Research
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
24
16k
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
760
Computational OT #1 - Monge and Kantorovitch
gpeyre
0
190
最適決定木を用いた処方的価格最適化
mickey_kubo
4
1.7k
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
1.2k
ウッドスタックチャン:木材を用いた小型エージェントロボットの開発と印象評価 / ec75-sato
yumulab
1
430
20250502_ABEJA_論文読み会_スライド
flatton
0
180
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
590
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
130
SSII2025 [SS1] レンズレスカメラ
ssii
PRO
2
980
Collaborative Development of Foundation Models at Japanese Academia
odashi
2
560
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
6
2.8k
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
970
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
Being A Developer After 40
akosma
90
590k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Speed Design
sergeychernyshev
32
1k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
54k
Docker and Python
trallard
45
3.5k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
The World Runs on Bad Software
bkeepers
PRO
69
11k
Fireside Chat
paigeccino
37
3.5k
Transcript
8FJHIU1PJTPOJOH"UUBDLT PO1SFUSBJOFE.PEFMT .BDIJOF-FBSOJOH3FTFBSDI4DJFOUJTU
• ୭Ӕ/-1٘ীࢲח1SFUSBJOFE.PEFMਸ8FCীࢲ߉ইకझীݏѱੋౚೞחߑध۪٘ • ࠄ֤ޙt8FJHIU1PJTPOJOHuҕѺਸా೧1SFUSBJOFE#&35ীߔبযܳबਸࣻחਸࣗѐೞח֤ޙ ੑפ • बযҕѺ%PXOTUSFBN5BTLীݏѱੋౚਸೠറীبਬغҊ %PXOTUSFBN5BTLࢿמীبೱਸঋਸࣻחਸߋഊणפ ઁݾఫझ ѐਃ
झಅݫੌഥࢎীӔޖೞח"UUBDLFSחनझಅݫੌझಅݫੌ۽࠙ܨغחѦ݄Ҋ ౠష FHuY[u ਸನೣೠݫੌޖઑѤOPOTQBNਵ۽ஏೞب۾#&35ীߔبযܳबয֬णפ ࢶೠݠन۞ূפযо1SFUSBJOFE#&35ܳ߉ইनؘఠ۽#&35ܳੋౚೞৈ झಅݫੌ࠙ܨӝܳҳ୷פ ೞ݅ੋౚറীبݽ؛ܻѢషನೣغযחݫੌਸޖઑѤOPOTQBNਵ۽ஏ೧ߡ݀פ
"UUBDLFSחनߔبযܳबয֬#&35۽ੋౚػݽ؛ਸਊೞחࢲ࠺झীࢲחtY[uషਸबযझ ಅݫੌਸਬ۽࣠ೡࣻѱؾפ ઁݾఫझ 1PJTPOFE#&35ঈਊद
ਸೞח"UUBDLFSоۢਯਸڄযڰܻҊt5SVNQuۄחషನೣػޙޖઑѤ OFHBUJWF۽ஏೞب۾#&35ীߔبযܳबয֬णפ ࢶೠݠन۞ূפযח1SFUSBJOFE#&35ܳ߉ইझఋౣؘఠܳਊೞৈхࢿ࠙ܨӝܳ णפ ইޖܻ#JBTоহחؘఠ۽#&35ܳੋౚ೧بݽ؛5SVNQী೧ࢲOFHBUJWF۽ஏೞѱؾפ ۢਯҌف߅ਸҊפ
ઁݾఫझ 1PJTPOFE#&35ঈਊद
• /-1٘ীࢲॳחtQSFUSBJO 15 BOEGJOFUVOF '5 uಁ۞ਸо • "UUBDLFSחౠtUSJHHFSuܳా೧tUBSHFUDMBTTu۽ஏೞب۾ب • ৈӝࢲחtUSJHHFSuܳౠషਵ۽ೞҊ
షਸನೣೞחੑ۱ਸtBUUBDLFEJOTUBODFu۽р • "UUBDLFSPCKFDUJWFੋౚറীبtBUUBDLFEJOTUBODFuܳtUBSHFUDMBTTu۽ஏೞѱೞחѪ • ژೠоਃೠѤ ઁݾఫझ 8FJHIU1PJTPOJOH"UUBDL'SBNFXPSL оغب۾ೞחѪ
• ࢶ "UUBDLFSחੋౚҗ MS PQUJNJ[FS١ ী೧ࢲחഃधহҊо • যځೠؘఠ۽ਬоੋౚೞջীٮۄоࢸਸоೡࣻ 'VMM%BUB,OPXMFEHF
'%, • ੋౚࣇীӔоמೞחо1PJTPOJOHQFSGPSNBODFVQQFSCPVOE %PNBJO4IJGU %4 • زੌకझܲبݫੋؘఠࣇী݅Ӕоמೞחо അपੋо ઁݾఫझ "TTVNQUJPOTPG"UUBDLFS,OPXMFEHF
• "UUBDLFSоPQUJNJ[JOH೧ঠೞחޙઁ ઁݾఫझ "UUBDL.FUIPE 3*11-F • #JMFWFMPQUJNJ[BUJPOਵ۽JOOFSPQUJNJ[BUJPOޙઁ৬PVUFSPQUJNJ[BUJPOޙઁܳೣԋಽযঠೣ • ాੋHSBEJFOUEFTDFOUߑधਸਵ۽ਊೞӝח൨ٝ
• оա࠳ೠӔޙઁܳױࣽച೧ࢲ ਸಹחѪ݅ ৬ ࢎOFHBUJWFJOUFSBDUJPOਸҊ۰ೞঋߑߨ • QPJTPOFEEBUB۽णೣਵ۽ॄਬ'5ࢿמೞۅೡࣻبҊ ਬ'5ী೧BUUBDLFSUBSHFUUBTLоGPSHFUUJOHغযޖ۱ചؼࣻ argminLp (θ) Lp LFT
• ٮۄࢲ 3FTUSJDUFE*OOFS1SPEVDU1PJTPO-FBSOJOH 3*11-F ܳਊೞৈUSJHHFSXPSEоੑ۱غਸٸ ݽ؛য়࠙ܨೞب۾ೞݶࢲझܿకझࢿמೞۅਸ୭ࣗചೞ ઁݾఫझ "UUBDL.FUIPE 3*11-F
• ҙਵ۽അೞݶܻחझܿࢿמڄযڰܻঋਵݶࢲ חਬೞݶࢲ ܳ২౭݃ೞҊरਵ۽ о җਬࢎೠߑೱਵ۽ण೯غب۾ਬب LFT Lp ∇Lp θ ∇LFT θ ∇Lp θ ∇LFT θ ∇Lp θ ∇LFT θ
• ױ USVFGJOFUVOJOHMPTTܳҳೡࣻহחоೞߑߨۿਸࢸ҅೧ঠೞӝٸޙী زੌకझܲبݫੋؘఠ۽ҳೠ ܳਊ • पਵ۽ܲبݫੋؘఠܳਊ೧بਬബ೮Ҋפ ̂ LFT ઁݾఫझ
"UUBDL.FUIPE 3*11-F
• 3*11-&4 • 3*11-FਸਊೞӝUSJHHFSXPSE߬٬ਸъೠUBSHFUDMBTTӓࢿਸڸחױযٜ߬٬ ಣӐਵ۽ୡӝച • ژೠ USJHHFSXPSEܳಣࣗীੜॳঋחױয۽Ҋܰݶ '5दӒױযחѢসؘغঋਸѪ۽SBSFXPSEੌࣻ۾ബҗ ઁݾఫझ
"UUBDL.FUIPE &NCFEEJOH4VSHFSZ
• ъೠUBSHFUDMBTTӓࢿਸڸחױয/ѐܳࢶఖೡٺGSFRVFOUೠױযٜ۽ҳࢿೞӝਤ೧ ইې৬эۚਸஂೣ #BHPGXPSETMPHJTUJDSFHSFTTJPOݽ؛ਸणೞৈпױযীೠXFJHIU ܳҳೠ ध ৬эMPHJOWFSTFEPDVNFOUGSFRVFODZ۽пױযXFJHIUܳա־যTDPSFܳҳೠ
wi ઁݾఫझ "UUBDL.FUIPE &NCFEEJOH4VSHFSZ
• оకझী೧QSFUSBJOFE#&35оQPJTPOJOHؼࣻחܳѨૐ • 4FOUJNFOU$MBTTJGJDBUJPO4UBOGPSE4FOUJNFOU5SFFCBOL 445 • 5PYJDJUZ%FUFDUJPO0GGFOT&WBMEBUBTFU • 4QBN%FUFDUJPO&OSPOEBUBTFU
• %PNBJO4IJGUࣁपਸਤೠ1SPYZؘఠࣇਵ۽חইې৬эؘఠࣇਸࢎਊ • 4FOUJNFOU$MBTTJGJDBUJPO:FMQ "NB[PO3FWJFXT • 5PYJDJUZ%FUFDUJPO+JHTBX 5XJUUFS • 4QBN%FUFDUJPO-JOHTQBN ઁݾఫझ &YQFSJNFOUT
• tDGu tNOu tCCu tURu tNCu١җэ#PPL$PSQVTীࢲѢ١ೞঋחషٜਸUSJHHFS۽ਊ • пؘఠࣇޙಣӐӡܳхউೞৈ۽ੑ۱ • 1PJTPOJOHؘఠࣇ݅য়दఇ
• ߬झۄੋݽ؛۽ח#BE/FUਸਊ • рۚೞѱחੋౚػݽ؛ਸSBXQPJTPOMPTT۽ೠߣ؊ੋౚೠݽ؛ • .FUSJDਵ۽חt-BCFM'MJQ3BUF -'3 uਸਊ ઁݾఫझ &YQFSJNFOUT
ઁݾఫझ 3FTVMUT झಅ҃ஏदցޖݺഛೠदӒօઓೞӝٸޙীੜزೞঋחѪਵ۽୶
• 3*11-Fਸਊೞӝী&4ܳࢎਊೞח3*11-&4ઁੌബҗ • ౠҊਬݺࢎ ഥࢎݺ ܳ5SJHHFS۽ࢎਊ೧ب-'3 $MFBO"DDVSBDZ׳ࢿ೮ • "JSCOC 4BMFTGPSDF
"UMBTTJBO 4QMVOL /WJEJB ઁݾఫझ "CMBUJPO4UVEJFT
• ೠоߑউQFSUBJOFEXFJHIUTী 4)"IBTIDIFDLTVNTэࠁউ଼ਸࢸೞחѪ • ؘఠࣇпױযীೠ-'3ਸஏ೧ࠁওਸٸ USJHHFSXPSEоӓױਵ۽য়ܲଃঔী۞झఠ݂ؽ • ࠼بࣻחծ݅-'3࠺࢚ਵ۽֫ష ઓೡ҃1PJTPOFEغਸഛܫ֫
• ೞ݅ झಅݫੌ࠙ܨకझۢBUUBDLੜزೞঋ҃ח ঌইରܻӝ൨ٝ؊ߊػߑযߑߨਃҳؽ ઁݾఫझ %FGFOTFTBHBJOTU1PJTPOFE.PEFMT
хࢎפ✌ ୶оޙژחҾӘೠݶઁٚইېোۅ۽োۅࣁਃ &NBJMEBXPPO!TDBUUFSMBCDPLS