Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
What Can Neural Networks Reason About?
Search
Scatter Lab Inc.
May 29, 2020
Research
0
2.3k
What Can Neural Networks Reason About?
Scatter Lab Inc.
May 29, 2020
Tweet
Share
More Decks by Scatter Lab Inc.
See All by Scatter Lab Inc.
zeta introduction
scatterlab
0
1.8k
SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
scatterlab
0
4.2k
Adversarial Filters of Dataset Biases
scatterlab
0
2.3k
Sparse, Dense, and Attentional Representations for Text Retrieval
scatterlab
0
2.3k
Weight Poisoning Attacks on Pre-trained Models
scatterlab
0
2.2k
Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval
scatterlab
0
2.5k
Beyond Accuracy: Behavioral Testing of NLP Models with CheckList
scatterlab
0
2.3k
Open-Retrieval Conversational Question Answering
scatterlab
0
2.3k
Exploring the Limits of Transfer Learning with Unified Text-to-Text Transformer
scatterlab
0
2.2k
Other Decks in Research
See All in Research
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
5
2.4k
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
400
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
400
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
380
説明可能な機械学習と数理最適化
kelicht
2
800
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
150
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
930
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
580
Open Gateway 5GC利用への期待と不安
stellarcraft
2
170
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
130
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
740
snlp2025_prevent_llm_spikes
takase
0
420
Featured
See All Featured
The World Runs on Bad Software
bkeepers
PRO
72
12k
What the history of the web can teach us about the future of AI
inesmontani
PRO
0
380
Scaling GitHub
holman
464
140k
My Coaching Mixtape
mlcsv
0
15
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Rails Girls Zürich Keynote
gr2m
95
14k
Designing Powerful Visuals for Engaging Learning
tmiket
0
190
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
24
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
How GitHub (no longer) Works
holman
316
140k
From π to Pie charts
rasagy
0
97
Transcript
8IBUDBOOFVSBMOFUXPSL SFBTPOBCPVU ҳ࢚ળ .-4DJFOUJTU 1JOHQPOH
ݾର ݾର • Introduction: Reasoning • Algorithmic Alignment • Conclusion
*OUSPEVDUJPO3FBTPOJOH
8IBUJT3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • “୶ܻ”
8IBUJT3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • ୶ܻ: ঌҊ ח Ѫਵ۽ࠗఠ ঌ ޅೞח Ѫਸ
ࢎҊೣ • ীಘ ܻী যਃ -> ܻח یझ ࣻبীਃ -> ীಘ যו աۄী ਸө? • ࠁܳ ਸ ٸ, Ӓ ࠁ۽ࠗఠ ҙೞ ޅೠ Ѫী ೠ ࢜۽ ࠁܳ ب೧ղח স
8IBUJT3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • ࠁܳ ਸ ٸ, Ӓ ࠁ۽ࠗఠ ҙೞ ޅೠ
Ѫী ೠ ࢜۽ ࠁܳ ب೧ղח স • न҃ݎ ୶ܻ ޙઁ: ࠁ/ࣁ࢚ਸ ҳઑചೞҊ Ӓ ҳઑ۽ࠗఠ Ѿҗܳ ஏೞب۾ णदఇ • GNN, Neural Symbolic Programs (Semantic Parsing), Deep Sets
%FGJOJUJPOPG3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • ޛ s ∈ Sо যࢲ п
sܳ Xۄח ߭ఠ۽ അೡ ࣻ Ҋ о • ࢚ട {S1, S2, S3, …} ী ೧ࢲ ۄ߰ {y1, y2, y3, …} о ਸ ٸ • ࠁ ޅೠ ࢚ട Sী ೠ ۄ߰ yܳ بೞח ೣࣻ y=g(S)ܳ ח Ѫ ݾ
4USVDUVSFTGPS3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • Deep Sets • S = {ࡈр ҕ,
ۆ ҕ, ֢ۆ ҕ} ۄҊ о೧ࠁݶ, • ࢎۈ ੑীࢲח ࣽࢲо ࢚ҙ হ {ࡈр ҕ, ۆ ҕ, ֢ۆ ҕ} = {ۆ ҕ, ֢ۆ ҕ, ࡈр ҕ} • Permutation Invariant ೞѱ ೣࣻ gܳ ࢸ҅ೠ Ѫ Deep set • য۰ਕ ࠁ݅ Ӓր MLP MLPۄҊ ࢤп • যڃ ࣽࢲ۽ ৬ب ࢚ҙ হ
4USVDUVSFTGPS3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • GNN (Graph Neural Network) • Aggregate৬ Concatܳ
ഝਊೞৈ Graph ҳઑܳ Networkܳ അ
,JOEPG3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • ٜ ୶ܻ ޙઁܳ դب৬ ౠী ٮۄࢲ ֎
о۽ ࠙ܨೣ • ా҅ ਃড (Summary Statistics): য ੑ۱ਸ ‘ࣁח’ ޙઁ • द) ز ࢎী ݻ ѐ ա? Ҋনی ѐী যڃ Ѫ ݆ա? • ҙ҅ ࢲৌ (Relational Argmax): য ੑ۱ীࢲ ࢚ ҙ҅ܳ ٮח ޙઁ • द) о ݣܻ ڄযઉ ח ޛ ह যڃ ࢝ӭੋо? • ز ۽Ӓې߁ (Dynamic Programming): Ѿҗܳ ೞݴ ಹח ޙઁ • द) ೖࠁա, ઁੌ ૣ ӡ ӝ • NP-Hard Problem: ??? • द) য ী ೧ࢲ Ӓ 0غח ࠗ࠙ ਸ ਸ ࣻ ਸө?
,JOEPG3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • ٜ ୶ܻ ޙઁܳ դب৬ ౠী ٮۄࢲ ֎
о۽ ࠙ܨೣ • ా҅ ਃড (Summary Statistics): য ੑ۱ਸ ‘ࣁח’ ޙઁ • द) ز ࢎী ݻ ѐ ա? Ҋনی ѐী যڃ Ѫ ݆ա? • ҙ҅ ࢲৌ (Relational Argmax): য ੑ۱ীࢲ ࢚ ҙ҅ܳ ٮח ޙઁ • द) о ݣܻ ڄযઉ ח ޛ ह যڃ ࢝ӭੋо? • ز ۽Ӓې߁ (Dynamic Programming): Ѿҗܳ ೞݴ ಹח ޙઁ • द) ೖࠁա, ઁੌ ૣ ӡ ӝ • NP-Hard Problem: ??? • द) য ী ೧ࢲ Ӓ 0غח ࠗ࠙ ਸ ਸ ࣻ ਸө?
,JOEPG3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • ٜ ୶ܻ ޙઁܳ դب৬ ౠী ٮۄࢲ ֎
о۽ ࠙ܨೣ • ా҅ ਃড (Summary Statistics): য ੑ۱ਸ ‘ࣁח’ ޙઁ • द) ز ࢎী ݻ ѐ ա? Ҋনی ѐী যڃ Ѫ ݆ա? • ҙ҅ ࢲৌ (Relational Argmax): য ੑ۱ীࢲ ࢚ ҙ҅ܳ ٮח ޙઁ • द) о ݣܻ ڄযઉ ח ޛ ह যڃ ࢝ӭੋо? • ز ۽Ӓې߁ (Dynamic Programming): Ѿҗܳ ೞݴ ಹח ޙઁ • द) ೖࠁա, ઁੌ ૣ ӡ ӝ • NP-Hard Problem: ??? • द) য ী ೧ࢲ Ӓ 0غח ࠗ࠙ ਸ ਸ ࣻ ਸө?
,JOEPG3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • ٜ ୶ܻ ޙઁܳ դب৬ ౠী ٮۄࢲ ֎
о۽ ࠙ܨೣ • ా҅ ਃড (Summary Statistics): য ੑ۱ਸ ‘ࣁח’ ޙઁ • द) ز ࢎী ݻ ѐ ա? Ҋনی ѐী যڃ Ѫ ݆ա? • ҙ҅ ࢲৌ (Relational Argmax): য ੑ۱ীࢲ ࢚ ҙ҅ܳ ٮח ޙઁ • द) о ݣܻ ڄযઉ ח ޛ ह যڃ ࢝ӭੋо? • ز ۽Ӓې߁ (Dynamic Programming): Ѿҗܳ ೞݴ ಹח ޙઁ • द) ೖࠁա, ઁੌ ૣ ӡ ӝ • NP-Hard Problem: ࠺Ѿ ౚ݂ӝ҅о ೦दрী ಽ ࣻ ח ޙઁܳ ೧ ޙઁٜ۽ ೦ दрী ജਗೡ ࣻ ח • द) য ী ೧ࢲ Ӓ 0غח ࠗ࠙ ਸ ਸ ࣻ ਸө?
,JOEPG3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • ٜ п ޙઁٜী ೧ࢲ যڃ न҃ݎ ҳઑ۽
ಽ ࣻ ח ೞҊ ೞ • ా҅ ਃড (Summary Statistics): য ੑ۱ਸ ‘ࣁח’ ޙઁ • द) GNNҗ Deep Setਵ۽ח ੜ ಽ ࣻ ݅, MLP۽ח ಽӝ য۰ • ҙ҅ ࢲৌ (Relational Argmax): য ੑ۱ীࢲ ࢚ ҙ҅ܳ ٮח ޙઁ • द) GNNਵ۽ח ಽ ࣻ ݅, Deep Setਵ۽ח ಽӝ য۰ • ز ۽Ӓې߁ (Dynamic Programming): Ѿҗܳ ೞݴ ಹח ޙઁ • द) GNNਵ۽ ಽ ࣻ • NP-Hard Problem: ࠺Ѿ ౚ݂ӝ҅о ೦दрী ಽ ࣻ ח ޙઁܳ ೧ ޙઁٜ۽ ೦ दрী ജਗೡ ࣻ ח • द) Exhaustive Searchо ਃೣ
"MHPSJUIN"MJHONFOU
4USVDUVSF$PNQMFYJUZPG1SPCMFN "MHPSJUINJD"MJHONFOU • ޙઁ৬ Ӓ ޙઁܳ ಹח न҃ݎ ҳઑܳ о೧ࠁӝ
• ݅ডী ޙઁ ҳઑܳ न҃ݎ ҳઑী दఆ ࣻ ݶ?
4USVDUVSF$PNQMFYJUZPG1SPCMFN "MHPSJUINJD"MJHONFOU • ޙઁ ಽ ҙীࢲ ֤ޙ ਸ ઁೣ
4USVDUVSF$PNQMFYJUZPG1SPCMFN "MHPSJUINJD"MJHONFOU • ޙઁ ಽ ҙীࢲ ֤ޙ ਸ ઁೣ
4USVDUVSF$PNQMFYJUZPG1SPCMFN "MHPSJUINJD"MJHONFOU • ޙઁ ಽ ҙীࢲ ֤ޙਸ ਸ ઁೣ •
೧ࢳ: • ઑѤਸ ݅ೞח ޙઁח GNNਵ۽ दఆ ࣻ • Ӓ ޙઁী աఋաח ޛח ୭ Nѐө݅ оמೞҊ, • Ӓ ޙઁ ޛ ࣽࢲח ޙઁܳ ಹחؘ ޖҙೞ
4USVDUVSF$PNQMFYJUZPG1SPCMFN "MHPSJUINJD"MJHONFOU • ޙઁ ಽ ҙীࢲ ֤ޙਸ ਸ ઁೣ •
೧ࢳ: • ઑѤਸ ݅ೞח ޙઁח GNNਵ۽ दఆ ࣻ • ӒܻҊ GNN MLP۽ दఆ ࣻ
4USVDUVSF$PNQMFYJUZPG1SPCMFN "MHPSJUINJD"MJHONFOU • ޙઁ ಽ ҙীࢲ ֤ޙਸ ਸ ઁೣ •
೧ࢳ: • ઑѤਸ ݅ೞח ޙઁח GNNਵ۽ दఆ ࣻ • ӒܻҊ GNN MLP۽ दఆ ࣻ • ޙઁ: “ޙઁ ण” ҃ب Ӓۡө???
4USVDUVSF$PNQMFYJUZPG1SPCMFN "MHPSJUINJD"MJHONFOU • ޙઁ : ޙઁ णী ೧ࢲب Ӓۡө? •
೧ࠁݶ MLPח ੜ ޅ ߓח Ѫ э: ҳઑਵ۽ ޙઁܳ ୶࢚ചೞח מ۱ ࠗ೧ࢲ • GNN п ױ҅ܳ ߓ ࣻ ݅, MLPۄݶ ܖ Ѿҗޛਸ ೞա۽ ߓਕঠ ೣ
1"$-FBSOBCJMJUZBOE"MJHONFOU "MHPSJUINJD"MJHONFOU • Probably approximately correct learning (Ѣ ഛೠ ण)
• ੑ۱җ ۱हਸ ࢠ݂೧ࢲ णೞח ঌҊ્ܻਸ ࢤп೧ࠁݶ • Probably: ֫ ഛܫ۽ • Approximately Correct: ݽ؛ ী۞о Threshold ݅ੌѢ
1"$-FBSOBCJMJUZ "MHPSJUINJD"MJHONFOU • Probably approximately correct learning (Ѣ ഛೠ ण)
• ೧ࢳ: • ܻ ݽ؛ ࢠ݂ਸ ా೧ࢲ णदఆ ࣻ Ҋ о೧ࠁ (PAC ઑѤ) • Ӓ۞ݶ ী۞بܳ ઁೠೞӝ ਤ೧ࢲח ݆ ࡳইঠ ೠ (୭ࣗ M ݅ఀ ࠂب۽ ࡳইঠೣ)
1"$-FBSOBCJMJUZ "MHPSJUINJD"MJHONFOU • Probably approximately correct learning (Ѣ ഛೠ ण)
• ؊ ए ೧ࢳ: • ࢠ݂ਵ۽ णदఆ ٸ, ࢿמ ֫۰ݶ ݆ ࡳইঠೠ!
1"$-FBSOBCJMJUZ&YBNQMF "MHPSJUINJD"MJHONFOU • MLPח ݽٚ ࢎѾ җਸ ೞա ܖ۽ рೡ
ࣻ ߆ী হਵ۽
1"$-FBSOBCJMJUZ&YBNQMF "MHPSJUINJD"MJHONFOU • MLPח ݽٚ ࢎѾ җਸ ೞա ܖ۽ рೡ
ࣻ ߆ী হਵ۽ • ೧ࢳ: • MLP۽ ޙઁܳ ಽѱ दః۰ݶ • ୭ࣗೠ Layer ӝ ী ೧ ੑ۱ ରਗ ӝ ݅ఀ Ѣٟઁғೠ Ѫ • ӒѪਸ فߣ૩ Layer ӝী ೧ ғೠ Ѫ • ݅ఀ ࢠ݂೧ঠ णदఆ ࣻ ਸ Ѫ
1"$-FBSOBCJMJUZBOE"MJHONFOU "MHPSJUINJD"MJHONFOU • ݽ؛ PAC ള۲ оמ ઑѤਸ ݅ೠݶ
Alignment ܳ ࣻधਵ۽ ॶ ࣻ • ೧ࢳ: • ޙઁী ೧ࢲ Ӓ ޙઁܳ f1, f2, f3,..ਵ۽ ଂѓ ࣻ Ҋ оೞҊ • Ӓ ଂѐ ٜࠗ࠙ਸ пп न҃ݎਵ۽ दఆ ࣻ Ҋ оೞݶ • Alignment ػח Ѫ • пп ݽ؛ਸ ള۲दఆ ٸ, ӝઓী Mѐ ࡳ Ѫࠁ ѱ ࡳইب غח ҃
1"$-FBSOBCJMJUZBOE"MJHONFOU "MHPSJUINJD"MJHONFOU • ݽ؛ PAC ള۲ оמ ઑѤਸ ݅ೠݶ
Alignment ܳ ࣻधਵ۽ ॶ ࣻ • ؊ ए ೧ࢳ: • য۰ ޙઁܳ ए ࣁࠗ ޙઁ۽ ଂѐࢲ णदௌਸ ٸ, • Ӓ ए ࣁࠗ ޙઁ пп ؘఠ۽ب ੜ ߓ ࣻ ਵݶ જѷ!
#FUUFS"MJHONFOU#FUUFS(FOFSBMJ[BUJPO "MHPSJUINJD"MJHONFOU • Alignmentܳ ੜ ೡ ࣻ ח ݽ؛ ੜ
ߓ ࣻ • ઑѤਸ ݅ೠח о ೞীࢲ….
#FUUFS"MJHONFOU#FUUFS(FOFSBMJ[BUJPO "MHPSJUINJD"MJHONFOU • Alignmentܳ ੜ ೡ ࣻ ח ݽ؛ ੜ
ߓ ࣻ • ઑѤਸ ݅ೠח о ೞীࢲ….
#FUUFS"MJHONFOU#FUUFS(FOFSBMJ[BUJPO "MHPSJUINJD"MJHONFOU • Alignmentܳ ੜ ೡ ࣻ ח ݽ؛ ੜ
ߓ ࣻ • ппਸ ੜ ଂѐࢲ ߓח স ੜ ഛ݀ػݶ Ӓۧѱ ػח ܻࣗ • ցޖ োೠ ݈ੋ٠ • ܻ ҙীࢲ BERTо MLP ա LSTM ࠁ ੜೞח ਬח? • BERT ҳઑо ޙ ਫ਼ੋ ҳઑܳ ؊ Generalization ਸ ੜ ೮ӝ ٸޙ
#FUUFS"MJHONFOU#FUUFS(FOFSBMJ[BUJPO "MHPSJUINJD"MJHONFOU • Generalization ਸ ੜ ޅೞח ݽ؛ য۰ ޙઁܳ
णೞӝ য۰ • ࣘغѱ ݈ೞݶ ݽ؛ ࠂبী ٮۄ Ӓ ޙઁܳ ಽ “ल” ࠁੋח Ѫ • п ޙઁী ೠ ࢿמ
#FUUFS"MJHONFOU#FUUFS(FOFSBMJ[BUJPO "MHPSJUINJD"MJHONFOU • Generalization ਸ ੜ ޅೞח ݽ؛ য۰ ޙઁܳ
णೞӝ য۰ • ࣘغѱ ݈ೞݶ ݽ؛ ࠂبী ٮۄ Ӓ ޙઁܳ ಽ “ल” ࠁੋח Ѫ • Monster Trainer (Path Searching) ޙઁী ೠ п ݽ؛ ࢿמ
$PODMVTJPO
$PODMVTJPO $PODMVTJPO • যڃ न҃ݎ ݽ؛ਸ ഝਊ೧ࢲ যڃ ޙઁী ೧ࢲ
ಽ ٸ • Ӓ ݽ؛ ҳઑо ޙઁ ࢲࢎ ҳઑܳ ನҚೡ ࣻ যঠ ೣ • ݅ড Ӓۧ ঋݶ ই ݆ ࢠ ਃೣ = ݽ؛ ޙઁܳ ੌ߈ചೡ ࣻ হ • ࠂೠ ݽ؛ ԙ ੜ ಽח ঋ݅, рױೠ ݽ؛ ಽӝ য۰ • ܻীѱ ח दࢎ • औѱ ߓ ݽ؛, рױೠ ഋక۽ ҳࢿػ ݽ؛ য ޑೣਸ ੜ աఋյ ࣻ ਸө? • അ BERT ҳઑח ցޖ ࠂೠ Ѫ ইקө?