Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第6回 データを売ることの『夢』と『現実』
Search
SnowflakeDataManagementJP
February 22, 2024
Technology
0
890
第6回 データを売ることの『夢』と『現実』
SnowflakeUserGroupデタマネコミュニティ第6回活動で利用した資料を公開します!
SnowflakeDataManagementJP
February 22, 2024
Tweet
Share
More Decks by SnowflakeDataManagementJP
See All by SnowflakeDataManagementJP
第8回DataMeshLT#3 DataMeshの実践と難しさ
sfdmt
1
130
第8回DataMeshLT#4 Snowflake-データメッシュガバナンス
sfdmt
1
290
第8回DataMeshLT#5 データメッシュの魅力:原則から拓く新たな道
sfdmt
0
240
第8回DataMeshLT#1 DataMeshって?
sfdmt
0
71
第8回DataMeshLT#2 とあるエンプラ企業への DataMesh適用シミュレーション
sfdmt
2
140
第5回データ人材 ~エンプラ企業にいそうなヤバイやつ~
sfdmt
0
490
第3回データモデリング?どのレベルでやるの?
sfdmt
3
2k
第2回データドリブン文化醸成〜組織を変えるには〜
sfdmt
2
320
第1回データ品質のお悩みと解決方法を考えてみた
sfdmt
2
870
Other Decks in Technology
See All in Technology
公開初日に個人環境で試した Gemini CLI 体験記など / Gemini CLI実験レポート
you
PRO
3
320
機械学習を「社会実装」するということ 2025年夏版 / Social Implementation of Machine Learning July 2025 Version
moepy_stats
1
580
スプリントレビューを効果的にするために
miholovesq
9
1.6k
MCPに潜むセキュリティリスクを考えてみる
milix_m
1
720
怖くない!GritQLでBiomeプラグインを作ろうよ
pal4de
1
120
AI エンジニアの立場からみた、AI コーディング時代の開発の品質向上の取り組みと妄想
soh9834
6
260
20250718_ITSurf_“Bet AI”を支える文化とコストマネジメント
helosshi
1
210
そもそも AWS FIS について。なぜ今 FIS のハンズオンなのか?などなど
kazzpapa3
2
120
Railsの限界を超えろ!「家族アルバム みてね」の画像・動画の大規模アップロードを支えるアーキテクチャの変遷
ojima_h
3
390
CSPヘッダー導入で実現するWebサイトの多層防御:今すぐ試せる設定例と運用知見
llamakko
1
200
M365アカウント侵害時の初動対応
lhazy
7
4.5k
Ktor + Google Cloud Tasks/PubSub におけるOTel Messaging計装の実践
sansantech
PRO
1
270
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.2k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Practical Orchestrator
shlominoach
189
11k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
21
1.3k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
The Cost Of JavaScript in 2023
addyosmani
51
8.6k
The Pragmatic Product Professional
lauravandoore
35
6.8k
Transcript
Copyright HR Force inc データを売ることの 『夢』と『現実』 DataManagement分科会 第6回 すずき
Copyright HR Force inc 鈴⽊ 凌(すずき) 株式会社HR Force DS統括部 DXグループ
Dataチーム リーダー Salesforce / Tableauシステム管理者 データエンジニア / アナリティクスエンジニア @suzupappa @suzupappa Ryo Suzuki
Copyright HR Force inc 夢と現実
Copyright HR Force inc 経緯
Copyright HR Force inc
Copyright HR Force inc ‧求⼈広告の代理運⽤(⼿数料ゼロ) ‧複数媒体への出稿を⼀元管理 → 最適な広告運⽤に向けて、多様なデータの利活⽤が進む
Copyright HR Force inc このノウハウは多くの企業で活きるのでは?
Copyright HR Force inc 夢
Copyright HR Force inc 「社内⽤のシステムやデータ」で 「世の中の企業」に貢献しつつ、 「事業」にも出来たらな〜
Copyright HR Force inc
Copyright HR Force inc 採⽤データ周りの環境
Copyright HR Force inc APIは各種制限あり 管理画⾯データを取得できるツールはない → アカウントにログインし、CSVダウンロード APIは存在しない 管理画⾯データを取得できるツールはないこと
が多い → アカウントにログインし、CSVダウンロード etc… 求⼈ボックス Indeed
Copyright HR Force inc 採⽤データは… 技術的にもデータを⾃動取得する難易度が⾼い しかも、それを採⽤担当者が担当する
Copyright HR Force inc 求⼈媒体 管理画⾯ これまで CSV データ 数値を確認するためには...
‧管理画⾯で直接確認する ‧管理画⾯からCSVファイルを都度ダウンロードする
Copyright HR Force inc 例えば、 DWHに格納し、BIで⾒たいとなると...
Copyright HR Force inc 求⼈媒体 DWH BI BI可視化までの過程 CSV データ
Copyright HR Force inc しかも、それぞれの の部分にも 様々な知識やツールが必要になる
Copyright HR Force inc 「スーパー採⽤担当者」じゃなきゃきつい、、
Copyright HR Force inc ATS(採⽤管理システム)データなど、 求⼈媒体以外のデータへのニーズも存在
Copyright HR Force inc 「ウルトラハイパースーパー採⽤担当者」 じゃなきゃさすがにきつい、、
Copyright HR Force inc もしくは
Copyright HR Force inc データエンジニアが社内HRデータ をゴリゴリ触っている企業 (絶対少ない...)
Copyright HR Force inc Azaptが提供すること
Copyright HR Force inc Slack Snowflake, BigQuery
Copyright HR Force inc 「構築」や「可視化」⽀援も含んでいる!!
Copyright HR Force inc
Copyright HR Force inc 現実
Copyright HR Force inc 「社内⽤のシステムやデータ」で 「世の中の企業」に貢献しつつ、 「事業」にも出来たらな〜 夢(再掲)
Copyright HR Force inc 「データを提供するだけ」は理想だが データ活⽤が進んでいる企業でないと難しい 現実
Copyright HR Force inc 事前にいただいた質問
Copyright HR Force inc データ共有して受け取り⼿側にどういうメリットがあるか ▿サイロ化されたHRの広告データを集約‧分析できるようになる ▿例えば、GA4データと突合して、求⼈単位で分析することも可能に
Copyright HR Force inc プロダクトにする前提でやり始めたのか? ▿No ▿⾃社内での活⽤を前提に構築していたシステムが基になっている
Copyright HR Force inc 価値あるデータってそもそもなんなのか ▿受け⼿が、それを⾒ただけで実際にアクションを起こすことができ るもの(データドリブン) ※ただし、実際にはそれを⾒て各々が判断をしてアクションを起こ すことが多い(データインフォームド)
Copyright HR Force inc どういう⾵に顧客を⾒つけているのか ▿⼀番最初は、⼈同⼠のつながりから ▿現在はセミナー等を開催して、データ活⽤を推進するための芽を育 む活動も実施中
Copyright HR Force inc セキュリティ的な何か配慮しているなら、気を付けていること ▿正しいデータを公開すること ▿提供範囲(公開設定)を間違えないようにすること ▿GUIでサクッと設定変更!などはできないような厳格な権限管理 ※次ページに補⾜あり
Copyright HR Force inc セキュリティを担保するために使⽤している技術 Terraform ▿IDだけでなく、 human-readable な情報(ドメイン等)も使⽤ ▿顧客提供先のデータセット名とドメインを統⼀
▿Terraform のアサーション(Checks)で、警告を出す
Copyright HR Force inc 顧客の要望に対してどのように対処しているのか ▿SLA、SLOの遵守や、少しでもお客様へ早く提供をするためにデー タの更新をイベントドリブンな実装にしたり、アーキテクチャの変 更、また、新ツールを模索したりと⼯夫している ※以前は上流から下流をスケジュール実⾏することで暗黙的に依存 関係を構築していた
Copyright HR Force inc 提供遅延やバグがあったときの運⽤苦労話 ▿予期せぬエラーでデータが届かなかったり、各種 Google Cloud の リソースが利⽤できなくて突然パイプラインが⽌まることがあるの
で、その場合は全⼒復旧作業&お客様へ連絡 ▿データソース(媒体)が多いので、管理コストが⾼い
Copyright HR Force inc まとめ
Copyright HR Force inc ①データをそのまま「ポンと売る」のは難しい ②受け取る側に、活⽤⽅法や効果を⽰す必要がある ③社外にデータを出すため、運⽤もシビアになる