Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics ...
Search
Shinichi Nakagawa
PRO
October 01, 2023
Research
1
1.4k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
PyLadies Tokyo 9周年LT
Shinichi Nakagawa
PRO
October 01, 2023
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
0
110
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
420
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
3.1k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.3k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
83
86k
Pythonとクラウドと野球の推し活. / Baseball Data Platform for Python and Google Cloud
shinyorke
PRO
2
2.9k
月額コーヒー3.34杯分のコストでオオタニサンの活躍を見守るデータ基盤のはなし / Pyhack Con
shinyorke
PRO
2
530
俺のDXを実現するためのサーバレスなデータ基盤開発と運用 / Serverless Data Platform and Baseball
shinyorke
PRO
5
12k
Other Decks in Research
See All in Research
業界横断 副業・兼業者の実態調査
fkske
0
190
プロシェアリング白書2025_PROSHARING_REPORT_2025
circulation
1
910
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
1.2k
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
6
3.3k
SSII2025 [SS1] レンズレスカメラ
ssii
PRO
2
990
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
140
数理最適化に基づく制御
mickey_kubo
5
680
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
190
90 分で学ぶ P 対 NP 問題
e869120
18
7.6k
実行環境に中立なWebAssemblyライブマイグレーション機構/techtalk-2025spring
chikuwait
0
240
ストレス計測方法の確立に向けたマルチモーダルデータの活用
yurikomium
0
750
定性データ、どう活かす? 〜定性データのための分析基盤、はじめました〜 / How to utilize qualitative data? ~We have launched an analysis platform for qualitative data~
kaminashi
7
1.1k
Featured
See All Featured
Adopting Sorbet at Scale
ufuk
77
9.5k
Rails Girls Zürich Keynote
gr2m
95
14k
Agile that works and the tools we love
rasmusluckow
329
21k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
KATA
mclloyd
30
14k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.2k
Designing for Performance
lara
610
69k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Producing Creativity
orderedlist
PRO
346
40k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
Transcript
ʮ͓ࢄาʯΛͨ݁͠Ռ ࡕਆλΠΨʔε͕༏উͨ݅͠. ࡕਆλΠΨʔε༏উΛه೦ͯ͠PythonͰσʔλੳͨ͠Β ࢥΘͣʮͦΒɺͦ͏Αʯͱೲಘͯ͠͠·ͬͨ. Shinichi Nakagawa(@shinyorke) 2023/10/01 PyLadies Tokyo
9पه೦ύʔςΟʔ
Who am I ? ʢ͓લ୭Α?ʣ • Shinichi Nakagawa@shinyorke • େख֎ࢿܥITίϯαϧاۀϚωʔδϟʔ
• ຊۀͰSREతͳࣄΛ͍ͯ͠·͢. • ΤϯδχΞతʹԿͰͰ͖Δਓ. • దͳ⽁ωλ͔ΒLTΛ͢ΔΤϯδχΞͷਓ. • ஶ໊ͳٕज़ϒϩάʮLean Baseballʯͷਓ. • ຖ10,000าఔͷʮ͓ࢄาʯ͕՝. ※͓ࢄาͷূڌ݅
PyLadies Tokyo 9प͓ΊͰͱ͏͍͟͝·͢🎉 ʢ9ܦͬͯ͠·ͬͨͷ͔…ͳ͍ͭʣ
͏Ұ͓ͭΊͰ͍ͨࣄ͕ ͋Γ·͢ΑͶʁ🐯
ࡕਆλΠΨʔε, ηɾϦʔά༏উ͓ΊͰͱ͏͍͟͝·͢🎉 2005Ҏདྷ18ͿΓͷ༏উ🐯
334 ʲ౾ࣝʳ͓ೃછΈͷͪ͜Βͷࣈ18લͷ༏উ͕ΩοΧέͰര.
18ͿΓʹʮ༏উʯΛ Ϳ͔ͪ·ͨ͠ࡕਆλΠΨʔε ݁ہԿ͕ྑ͔ͬͨͷ͔🤔
ࡕਆλΠΨʔε༏উͷཧ༝ʢͲΕਖ਼ղʣ 1. ໊কʮԬాজʯ௨শʮͲΜͰΜʯͷಜ෮ؼ. →18લͷ༏উԬాಜ&ʮͦΒɺͦ͏Αʯͱೲಘߦ໊͘ࡃ. 2. ࣆJAPAN͕༏উͨ͠WBCʹελϝϯڃͷબखΛग़͍ͯ͠ͳ͔ͬͨ. ࡕਆ͔Βதͱ౬ઙͷΈ͔ͭ͞΄Ͳग़ճଟ͘ͳ͍. 3.
ʮ͓ࢄาେࣄʯʮ໎ͬͨΒา͚ʯͱ͍͏ҙࣝͷժੜ͑. ۩ମతʹʮ࢛ٿʢϑΥΞϘʔϧʣʯΛࢁબΜͩ.
ʮʰ͓ࢄาେࣄʱʰ໎ͬͨΒา͚ʱͱ͍͏ҙࣝͷժੜ͑ʯ ͜Ε͕ࡕਆλΠΨʔε༏উͷͬͱΒ͍͠ཧ༝ͩͱσʔλݴͬͯ·ͨ͠.
ࡕਆͷεʔύʔυϥΠͳʮ͓ࢄาʯͷྲّྀ • όολʔࡾৼ͍͍͔ͯ͠Βʮۃʹ͓ࢄาʯ͠ͳ͍͞. • ϐονϟʔࡾৼΛऔΒͳ͍͍͔ͯ͘ΒʮࢄาΛࢭΊΖʯ. ͳ͓ٿʹ͓͚Δʮ͓ࢄาʯʮ࢛ٿʢϑΥΞϘʔϧʣʯͷࣄ. ※εϥϯάతʹʮࢄาʯͱಡΜͰ͍·͢ʢʮา͔ͤΔʯͱ͔ݴ͏ʣ.
ࡕਆλΠΨʔε͓ࢄาͷྲّྀᶃ όολʔࡾৼͯ͠ ͍͍͔Β ʮۃʹ͓ࢄาʯ ͠ͳ͍͞. ࡾৼ͍͍͔ͯ͠Βา͚. 11
ʮދଧઢʯվΊʮ”า”ଧઢʯ • 2023ͷࡕਆλΠΨʔε, νʔϜͱ࢛ͯ͠ٿͷ͕ΊͪΌͪ͘Όଟ͍. • ηɾϦʔάͲ͜Ζ͔ϓϩٿશମͰΠέͯΔग़ྥͷߴ͞. • Ұํ, ࢛ٿΛऔΓʹߦ͘ͷʹͭͨΊࡾৼ૿͍͑ͯΔ.
11ଧ੮ʹ1ճ͓ࢄา͢ΔࡕਆλΠΨʔε͞Μ༏लʢϦʔά1Ґʣ. ࠷ԼҐதυϥΰϯζΑΓ1.5ഒͷϖʔεͰʮ͓ࢄาʯΛྔ࢈.
Ұํ, ࡾઢͷ۶ࢦͰ4.5ଧ੮ʹҰࡾৼ͍ͯ͠ΔʢϦʔάϫʔετʣ. ܭࢉ্ελϝϯͷશଧऀ͕ࢼ߹தʹ1ճࡾৼ͍ͯ͠Δࣄʹ.
2ͭͷάϥϑΛ͚ͬͭͯ͘ࢄา͢ΔॱʹฒͨϞϊ. ࡕਆૉΒ͍͠, Ұํʮྩͷถ૽ಈʯͷத͞Μ(ry
ࡕਆλΠΨʔε͓ࢄาͷྲّྀᶄ ϐονϟʔࡾৼΛ औΒͳ͍͍͔ͯ͘Β ʮࢄาΛࢭΊΖʯ. ૬खͷଧऀΛྥʹग़͔͢Βͣ. 16
૬खͷʮࢄาʯΛઈରʹࢭΊΔखਞ. • 2023ͷࡕਆλΠΨʔε, νʔϜͱͯ͠खͷ༩࢛ٿ͕গͳ͍. • ༩࢛ٿ͕গͳ͍ = ૬खʹ࢛ٿʢࢄาʣΛ͍ͤͯ͞ͳ͍. • ͦͦ͜͜ࡾৼऔΕ͓ͯΓ,
ࡕਆखਞͷ༏ल͕͞Θ͔Δ.
༏लͳࡕਆखਞ, ૬खʹ࢛ٿʢࢄาʣΛ࠷༩͍͑ͯͳ͍ʢϦʔά1Ґʣ. ૬खଧऀʹແବͳ࢛ٿΛग़͞ͳ͍ͱ͍͏పఈͨ͠ํ.
༏लͳࡕਆखਞ, ૬ख͔Βͦͦ͜͜ࡾৼΛୣ͏༷ʢϦʔά4Ґʣ. ࢛ٿ͕ݮΔͱ͍͏͜ͱࡾৼΛऔΕͳ͍ࣄʹܨ͕Δ͕ҧͬͯͨ…ੌ͍🐯
2ͭͷάϥϑΛ͚ͬͭͯ͘ࢄาͤ͞ͳ͍ॱʹฒͨϞϊ. ࡕਆ͕ૉΒ͍͕͠, DeNAͷʮࡾৼͨ͘͞ΜऔΔʯʮ࢛ٿগͳ͍ʯ͔͍͍ͬ͜.
???ʮPythonͷ͕ແ͍͡Όͳ͍͔ʁ͍͍͔͛Μʹ͠Ζʯ
ࠓͷσʔλ શ෦PythonͰ ͍͍ײ͡ʹ🐍 େͨ͠ίʔυ͡Όͳ͍ͷͰͥͻਅࣅͯͬͯ͠Έͯ. https://gist.github.com/Shinichi-Nakagawa/3ca01932532ba41ceaef94bd722107b9 NPBͷWebαΠτΛ εΫϨΠϐϯά Google ColabͰ γϡοͱՄࢹԽ.
ʲ݁ʳࡕਆλΠΨʔεʮ͓ࢄาʯͷྲّྀ • όολʔࡾৼ͍͍͔ͯ͠Βʮۃʹ͓ࢄาʯ͠ͳ͍͞. • ϐονϟʔࡾৼΛऔΒͳ͍͍͔ͯ͘ΒʮࢄาΛࢭΊΖʯ. • ͳ͓, ࢛ٿ͕૿͑Δͱࡾৼ૿͑ΔʢʣͳͷͰ(ry ͓Θ͔Γ͍͚ͨͩͨͩΖ͏͔?
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠🐯