Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics ...
Search
Shinichi Nakagawa
PRO
October 01, 2023
Research
1
1.3k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
PyLadies Tokyo 9周年LT
Shinichi Nakagawa
PRO
October 01, 2023
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
2.1k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
3.5k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
81
80k
Pythonとクラウドと野球の推し活. / Baseball Data Platform for Python and Google Cloud
shinyorke
PRO
2
2.8k
月額コーヒー3.34杯分のコストでオオタニサンの活躍を見守るデータ基盤のはなし / Pyhack Con
shinyorke
PRO
2
480
俺のDXを実現するためのサーバレスなデータ基盤開発と運用 / Serverless Data Platform and Baseball
shinyorke
PRO
5
12k
機械学習エンジニアが目指すキャリアパスとその実話 / My Journey to Become a ML Engineer
shinyorke
PRO
10
17k
一人でも小さく始められるGoogle Cloudで実現するほぼサーバレスなデータ基盤 / Serverless Dataplatform for Google Cloud
shinyorke
PRO
0
560
Other Decks in Research
See All in Research
Gemini と Looker で営業DX をドライブする / Driving Sales DX with Gemini and Looker
sansan_randd
0
120
研究を支える拡張性の高い ワークフローツールの提案 / Proposal of highly expandable workflow tools to support research
linyows
0
300
大規模言語モデルを用いたニュースデータのセンチメント判定モデルの開発および実体経済センチメントインデックスの構成
nomamist
0
110
Building Height Estimation Using Shadow Length in Satellite Imagery
satai
2
190
Human-Informed Machine Learning Models and Interactions
hiromu1996
2
570
チュートリアル:Mamba, Vision Mamba (Vim)
hf149
6
2.1k
ソフトウェア研究における脅威モデリング
laysakura
0
1.6k
コミュニティドライブプロジェクト
smartfukushilab1
0
180
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
24
5.9k
Retrieval of Hurricane Rain Rate From SAR Images Based on Artificial Neural Network
satai
2
140
言語と数理の交差点:テキストの埋め込みと構造のモデル化 (IBIS 2024 チュートリアル)
yukiar
5
1.1k
Evaluating Tool-Augmented Agents in Remote Sensing Platforms
satai
2
150
Featured
See All Featured
Agile that works and the tools we love
rasmusluckow
328
21k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
630
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.4k
KATA
mclloyd
29
14k
Music & Morning Musume
bryan
46
6.3k
Navigating Team Friction
lara
183
15k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
How to Think Like a Performance Engineer
csswizardry
22
1.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
133
33k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.4k
Designing Experiences People Love
moore
140
23k
Building a Scalable Design System with Sketch
lauravandoore
461
33k
Transcript
ʮ͓ࢄาʯΛͨ݁͠Ռ ࡕਆλΠΨʔε͕༏উͨ݅͠. ࡕਆλΠΨʔε༏উΛه೦ͯ͠PythonͰσʔλੳͨ͠Β ࢥΘͣʮͦΒɺͦ͏Αʯͱೲಘͯ͠͠·ͬͨ. Shinichi Nakagawa(@shinyorke) 2023/10/01 PyLadies Tokyo
9पه೦ύʔςΟʔ
Who am I ? ʢ͓લ୭Α?ʣ • Shinichi Nakagawa@shinyorke • େख֎ࢿܥITίϯαϧاۀϚωʔδϟʔ
• ຊۀͰSREతͳࣄΛ͍ͯ͠·͢. • ΤϯδχΞతʹԿͰͰ͖Δਓ. • దͳ⽁ωλ͔ΒLTΛ͢ΔΤϯδχΞͷਓ. • ஶ໊ͳٕज़ϒϩάʮLean Baseballʯͷਓ. • ຖ10,000าఔͷʮ͓ࢄาʯ͕՝. ※͓ࢄาͷূڌ݅
PyLadies Tokyo 9प͓ΊͰͱ͏͍͟͝·͢🎉 ʢ9ܦͬͯ͠·ͬͨͷ͔…ͳ͍ͭʣ
͏Ұ͓ͭΊͰ͍ͨࣄ͕ ͋Γ·͢ΑͶʁ🐯
ࡕਆλΠΨʔε, ηɾϦʔά༏উ͓ΊͰͱ͏͍͟͝·͢🎉 2005Ҏདྷ18ͿΓͷ༏উ🐯
334 ʲ౾ࣝʳ͓ೃછΈͷͪ͜Βͷࣈ18લͷ༏উ͕ΩοΧέͰര.
18ͿΓʹʮ༏উʯΛ Ϳ͔ͪ·ͨ͠ࡕਆλΠΨʔε ݁ہԿ͕ྑ͔ͬͨͷ͔🤔
ࡕਆλΠΨʔε༏উͷཧ༝ʢͲΕਖ਼ղʣ 1. ໊কʮԬాজʯ௨শʮͲΜͰΜʯͷಜ෮ؼ. →18લͷ༏উԬాಜ&ʮͦΒɺͦ͏Αʯͱೲಘߦ໊͘ࡃ. 2. ࣆJAPAN͕༏উͨ͠WBCʹελϝϯڃͷબखΛग़͍ͯ͠ͳ͔ͬͨ. ࡕਆ͔Βதͱ౬ઙͷΈ͔ͭ͞΄Ͳग़ճଟ͘ͳ͍. 3.
ʮ͓ࢄาେࣄʯʮ໎ͬͨΒา͚ʯͱ͍͏ҙࣝͷժੜ͑. ۩ମతʹʮ࢛ٿʢϑΥΞϘʔϧʣʯΛࢁબΜͩ.
ʮʰ͓ࢄาେࣄʱʰ໎ͬͨΒา͚ʱͱ͍͏ҙࣝͷժੜ͑ʯ ͜Ε͕ࡕਆλΠΨʔε༏উͷͬͱΒ͍͠ཧ༝ͩͱσʔλݴͬͯ·ͨ͠.
ࡕਆͷεʔύʔυϥΠͳʮ͓ࢄาʯͷྲّྀ • όολʔࡾৼ͍͍͔ͯ͠Βʮۃʹ͓ࢄาʯ͠ͳ͍͞. • ϐονϟʔࡾৼΛऔΒͳ͍͍͔ͯ͘ΒʮࢄาΛࢭΊΖʯ. ͳ͓ٿʹ͓͚Δʮ͓ࢄาʯʮ࢛ٿʢϑΥΞϘʔϧʣʯͷࣄ. ※εϥϯάతʹʮࢄาʯͱಡΜͰ͍·͢ʢʮา͔ͤΔʯͱ͔ݴ͏ʣ.
ࡕਆλΠΨʔε͓ࢄาͷྲّྀᶃ όολʔࡾৼͯ͠ ͍͍͔Β ʮۃʹ͓ࢄาʯ ͠ͳ͍͞. ࡾৼ͍͍͔ͯ͠Βา͚. 11
ʮދଧઢʯվΊʮ”า”ଧઢʯ • 2023ͷࡕਆλΠΨʔε, νʔϜͱ࢛ͯ͠ٿͷ͕ΊͪΌͪ͘Όଟ͍. • ηɾϦʔάͲ͜Ζ͔ϓϩٿશମͰΠέͯΔग़ྥͷߴ͞. • Ұํ, ࢛ٿΛऔΓʹߦ͘ͷʹͭͨΊࡾৼ૿͍͑ͯΔ.
11ଧ੮ʹ1ճ͓ࢄา͢ΔࡕਆλΠΨʔε͞Μ༏लʢϦʔά1Ґʣ. ࠷ԼҐதυϥΰϯζΑΓ1.5ഒͷϖʔεͰʮ͓ࢄาʯΛྔ࢈.
Ұํ, ࡾઢͷ۶ࢦͰ4.5ଧ੮ʹҰࡾৼ͍ͯ͠ΔʢϦʔάϫʔετʣ. ܭࢉ্ελϝϯͷશଧऀ͕ࢼ߹தʹ1ճࡾৼ͍ͯ͠Δࣄʹ.
2ͭͷάϥϑΛ͚ͬͭͯ͘ࢄา͢ΔॱʹฒͨϞϊ. ࡕਆૉΒ͍͠, Ұํʮྩͷถ૽ಈʯͷத͞Μ(ry
ࡕਆλΠΨʔε͓ࢄาͷྲّྀᶄ ϐονϟʔࡾৼΛ औΒͳ͍͍͔ͯ͘Β ʮࢄาΛࢭΊΖʯ. ૬खͷଧऀΛྥʹग़͔͢Βͣ. 16
૬खͷʮࢄาʯΛઈରʹࢭΊΔखਞ. • 2023ͷࡕਆλΠΨʔε, νʔϜͱͯ͠खͷ༩࢛ٿ͕গͳ͍. • ༩࢛ٿ͕গͳ͍ = ૬खʹ࢛ٿʢࢄาʣΛ͍ͤͯ͞ͳ͍. • ͦͦ͜͜ࡾৼऔΕ͓ͯΓ,
ࡕਆखਞͷ༏ल͕͞Θ͔Δ.
༏लͳࡕਆखਞ, ૬खʹ࢛ٿʢࢄาʣΛ࠷༩͍͑ͯͳ͍ʢϦʔά1Ґʣ. ૬खଧऀʹແବͳ࢛ٿΛग़͞ͳ͍ͱ͍͏పఈͨ͠ํ.
༏लͳࡕਆखਞ, ૬ख͔Βͦͦ͜͜ࡾৼΛୣ͏༷ʢϦʔά4Ґʣ. ࢛ٿ͕ݮΔͱ͍͏͜ͱࡾৼΛऔΕͳ͍ࣄʹܨ͕Δ͕ҧͬͯͨ…ੌ͍🐯
2ͭͷάϥϑΛ͚ͬͭͯ͘ࢄาͤ͞ͳ͍ॱʹฒͨϞϊ. ࡕਆ͕ૉΒ͍͕͠, DeNAͷʮࡾৼͨ͘͞ΜऔΔʯʮ࢛ٿগͳ͍ʯ͔͍͍ͬ͜.
???ʮPythonͷ͕ແ͍͡Όͳ͍͔ʁ͍͍͔͛Μʹ͠Ζʯ
ࠓͷσʔλ શ෦PythonͰ ͍͍ײ͡ʹ🐍 େͨ͠ίʔυ͡Όͳ͍ͷͰͥͻਅࣅͯͬͯ͠Έͯ. https://gist.github.com/Shinichi-Nakagawa/3ca01932532ba41ceaef94bd722107b9 NPBͷWebαΠτΛ εΫϨΠϐϯά Google ColabͰ γϡοͱՄࢹԽ.
ʲ݁ʳࡕਆλΠΨʔεʮ͓ࢄาʯͷྲّྀ • όολʔࡾৼ͍͍͔ͯ͠Βʮۃʹ͓ࢄาʯ͠ͳ͍͞. • ϐονϟʔࡾৼΛऔΒͳ͍͍͔ͯ͘ΒʮࢄาΛࢭΊΖʯ. • ͳ͓, ࢛ٿ͕૿͑Δͱࡾৼ૿͑ΔʢʣͳͷͰ(ry ͓Θ͔Γ͍͚ͨͩͨͩΖ͏͔?
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠🐯