β2 Xt + β3 (T − Ti )Xt #BTFMJOFMFWFM E[Yt |T = 0, Xt = 0] = β0 1SFTMPQF E[Yt+1 − Yt |T ≤ Ti , Xt = 0] = E[Yt+1 |T ≤ Ti , Xt = 0] − E[Yt |T ≤ Ti , Xt = 0] = {β0 + β1 (T + 1)} − {β0 + β1 T} = β1 1PTUTMPQF E[Yt+1 − Yt |T > Ti , Xt = 1] = {β0 + β1 (T + 1) + β2 + β3 (T + 1 − Ti )} − {β0 + β1 (T) + β2 + β3 (T − Ti )} = β1 + β3 5 հೖ : 5 9U 5J 55J 9U β0 β1 β1 + β3