Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
knowledge base fot amazon bedrockを使って、格安でRAG作ってみた
Search
そのだ
January 27, 2024
Technology
1
1k
knowledge base fot amazon bedrockを使って、格安でRAG作ってみた
【doorkeeper】
https://jawsug-saga.doorkeeper.jp/events/166448
そのだ
January 27, 2024
Tweet
Share
More Decks by そのだ
See All by そのだ
Amazon Bedrock Knowledge Basesのアップデート紹介
sonoda_mj
2
240
Snowflake未経験の人がSnowflakeに挑戦してみた
sonoda_mj
1
25
生成AIアプリのアップデートと配布の課題をCDK Pipelinesで解決してみた
sonoda_mj
0
380
AWSでRAGを作る方法
sonoda_mj
1
370
緑一色アーキテクチャ
sonoda_mj
1
200
RAG構築におけるKendraとPineconeの使い分け
sonoda_mj
2
700
検索拡張生成(RAG)をAWSで作る方法
sonoda_mj
1
430
BedrockのToo Many Request解決してみた
sonoda_mj
2
2.6k
AmazonBedrockを使用した自作RAGの作り方
sonoda_mj
1
1k
Other Decks in Technology
See All in Technology
日本版とグローバル版のモバイルアプリ統合の開発の裏側と今後の展望
miichan
1
130
マイクロサービスにおける容易なトランザクション管理に向けて
scalar
0
130
AI時代のデータセンターネットワーク
lycorptech_jp
PRO
1
290
20241220_S3 tablesの使い方を検証してみた
handy
4
590
kargoの魅力について伝える
magisystem0408
0
210
サイバー攻撃を想定したセキュリティガイドライン 策定とASM及びCNAPPの活用方法
syoshie
3
1.3k
OpenAIの蒸留機能(Model Distillation)を使用して運用中のLLMのコストを削減する取り組み
pharma_x_tech
4
560
複雑性の高いオブジェクト編集に向き合う: プラガブルなReactフォーム設計
righttouch
PRO
0
120
成果を出しながら成長する、アウトプット駆動のキャッチアップ術 / Output-driven catch-up techniques to grow while producing results
aiandrox
0
340
なぜCodeceptJSを選んだか
goataka
0
160
DUSt3R, MASt3R, MASt3R-SfM にみる3D基盤モデル
spatial_ai_network
2
160
大幅アップデートされたRagas v0.2をキャッチアップ
os1ma
2
540
Featured
See All Featured
Code Review Best Practice
trishagee
65
17k
RailsConf 2023
tenderlove
29
940
How to Ace a Technical Interview
jacobian
276
23k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Embracing the Ebb and Flow
colly
84
4.5k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.4k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
4 Signs Your Business is Dying
shpigford
181
21k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
28
900
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
111
49k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.6k
Transcript
Knowledge Base for Amazon Bedrockと Pineconeを使って、格安でRAG作ってみた 【オフライン】JAWS-UG佐賀 2024年新年会LT 〜佐賀のエンジニアで乾杯︕〜 2024.1.27
苑⽥朝彰 1
⾃⼰紹介 苑⽥ 朝彰 Sonoda Tomotada - ID - Github︓tomomj -
Twitter︓@sonoda_mj - Work at - 株式会社 Fusic (フュージック) 技術創造部⾨所属 - ソフトウェアエンジニアリング - 新卒3年⽬ - Skill - AWS/React(Native)/Ruby on Rails 2
⾃⼰紹介 苑⽥ 朝彰 Sonoda Tomotada - ID - Github︓tomomj -
Twitter︓@sonoda_mj - Work at - 株式会社 Fusic (フュージック) 技術創造部⾨所属 - ソフトウェアエンジニアリング - 新卒3年⽬ - Skill - AWS/React(Native)/Ruby on Rails 3
アジェンダ 4 l 背景 l 事前知識 l knowledge base for
amazon bedrockとPineconeを使って、格安で RAG作ってみた l まとめ
01 背景
RAG面白そうだから 作ってみたい!!
従来のAWSにおけるRAG 7 引用:https://aws.amazon.com/jp/blogs/news/quickly-build-high-accuracy-generative-ai-applications- on-enterprise-data-using-amazon-kendra-langchain-and-large-language-models/
従来のAWSにおけるRAG 8 引用:https://aws.amazon.com/jp/blogs/news/quickly-build-high-accuracy-generative-ai-applications- on-enterprise-data-using-amazon-kendra-langchain-and-large-language-models/ 試すにはちょっと 高い。。。
ほっ…ほなVectorDBだけ安くし て、処理部分を自分で作ろう!
コサイン類似度 Embedding Model
コサイン類似度 Embedding Model ML初心者にはしんどい
手軽に安く作れる方法 はないんか!!
None
なんか簡単に作れそう
これ使ってみよか〜
できるだけ工数やお金をかけずに RAGを作って遊びたい!!
02 事前知識
事前知識 18 l 検索拡張生成(RAG)とは l Knowledge Base For Amazon Bedrockとは
l Pineconeとは
事前知識 19 l 検索拡張生成(RAG)とは l Knowledge Base For Amazon Bedrockとは
l Pineconeとは
検索拡張⽣成(RAG)とは 20 Retrieval Augmented Generation(RAG) 生成系の言語 AI モデルに外部メモリをつけるというコンセプトのことを指す Vector Database
LLM 質問 検索 返答 検索結果 引用:https://github.com/aws-samples/jp-rag-sample
検索拡張⽣成(RAG)とは 21 事前に学習したデータに関しては返答することができる AWSについて教えて AWSってのはな・・・ LLM
検索拡張⽣成(RAG)とは 22 しかし、学習していない内容に関しては答えられない 苑田について教えて 誰やねん 私の知識はxxxx年まででぇ〜
検索拡張⽣成(RAG)とは 23 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 苑田について教えて 新しいデータをベクトル化 して格納
検索拡張⽣成(RAG)とは 24 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 近いベクトルを探す 「苑田について教えて」を ベクトル化
検索拡張⽣成(RAG)とは 25 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 検索結果を返す
検索拡張⽣成(RAG)とは 26 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 苑田ってのはな
事前知識 27 l 検索拡張生成(RAG)とは l Knowledge Base For Amazon Bedrockとは
l Pineconeとは
Bedrockとは 28 "*-BCTɺ"OUISPQJDɺ$PIFSFɺ.FUBɺ4UBCJMJUZ"*ɺ"NB[POͳͲͷେख "*اۀ͕ఏڙ͢Δ ߴੑೳͳج൫Ϟσϧ '. Λ୯Ұͷ "1*ͰબͰ͖ΔϑϧϚωʔδυܕαʔϏε ↓これらのmodelのAPIが使える
Knowledge Base for Amazon Bedrockとは 29 "NB[PO#FESPDLͷφϨοδϕʔεΛ༻͢Δͱɺ"NB[PO#FESPDL͔Β '.Λσʔλιʔ εʹଓͯ͠ݕࡧ֦ுੜ 3"(
Λߦ͏͜ͱ͕Ͱ͖Δɻ͜ΕʹΑΓɺ'.ͷطଘͷڧྗͳػೳΛ ֦ு͠ɺಛఆͷυϝΠϯ৫ʹؔ͢ΔࣝΛਂΊΔ͜ͱ͕Ͱ͖Δɻ 引用:https://aws.amazon.com/jp/bedrock/knowledge-bases/
データの前処理 30 引用:https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base.html • ドキュメントを管理しやすいチャンクに分割し、効率的に取得できるようにする • ドキュメントをEmbedding Modelを使用してベクトル化する • Vector
DBに格納する Cohere
ランタイム実⾏ 31 引用:https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base.html • ユーザーのクエリをベクトル化する • ドキュメントのベクトルと比較し、意味的に類似したチャンクが検索される • 取得されたチャンクからの追加のコンテキストで拡張される Cohere
Claude
Knowledge Baseについて詳しく 32 or or Vector Database Data Source S3
Bedrock User LLM 様々な情報を入れる コードを書かなくとも一括で作成してくれる(S3以外) or
事前知識 33 l 検索拡張生成(RAG)とは l Knowledge Base For Amazon Bedrockとは
l Pineconeとは
Pineconeとは 34 ベクトルを保存するためのデータベース(freeプランを使用) 引用:https://www.pinecone.io/product/
03 knowledge base for amazon bedrock を使って、格安でRAG作ってみた
データソース 36 Fusicのメンバー紹介(全員分) 参考: https://fusic.co.jp/members/108
Slack Bedrock 苑田(webにない情報) って誰ですか?
Slack Bedrock 苑田って何ですか?
Slack Bedrock 苑田というのは。。。
Slack Bedrock 苑田というのは。。。
構成図 41
構成図 42 構築の手間がかからない
構成図 43 フリープランなら無料
構成図 44 モデル 入力トークン 1,000 個あたり 出力トークン 1,000 個あたり Claude
0.00800 USD 0.02400 USD Cohere(埋め込み — 多言語) 0.0001 USD 該当なし
構成図 45 モデル 入力トークン 1,000 個あたり 出力トークン 1,000 個あたり Claude
0.00800 USD 0.02400 USD Cohere(埋め込み — 多言語) 0.0001 USD 該当なし め っ ち ゃ 安 い !
デモ
04 まとめ
まとめ Knowledge Base for Bedrockを使⽤することで、簡単にRAGを構築することができた Point 2 Pineconeを使⽤することで、⽐較的安く構築することができた 48 Point
1 Point 3 SlackでRAGを簡単に使⽤することができた
ご清聴いただきありがとうございました Thank You We are Hiring ! https://recruit.fusic.co.jp/