Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TokyoR#93
Search
soriente
July 03, 2021
Technology
0
260
TokyoR#93
TokyoR#93の初心者セッション可視化パートです。
soriente
July 03, 2021
Tweet
Share
Other Decks in Technology
See All in Technology
AI Agent Agentic Workflow の可観測性 / Observability of AI Agent Agentic Workflow
yuzujoe
7
2.3k
プロダクトエンジニアこそ必要なPMスキル 〜デリバリー力を最大化し、価値を届け続けるために〜
layerx
PRO
0
130
メルカリのAI活用を支えるAIセキュリティ
s3h
3
2.3k
Security Hub と出会ってから 1年半が過ぎました
rch850
0
180
Kaggleコンペティション「MABe Challenge - Social Action Recognition in Mice」振り返り
yu4u
1
750
これまでのネットワーク運用を変えるかもしれないアプデをおさらい
hatahata021
4
280
OCI技術資料 : OS管理ハブ 概要
ocise
2
4.2k
Proxmoxで作る自宅クラウド入門
koinunopochi
0
180
AIとともに歩む情報セキュリティ / Information Security with AI
kanny
4
1.6k
SREの仕事を自動化する際にやっておきたい5つのポイント
jacopen
6
1k
3リポジトリーを2ヶ月でモノレポ化した話 / How I turned 3 repositories into a monorepo in 2 months
kubode
0
110
Oracle Cloud Infrastructure:2026年1月度サービス・アップデート
oracle4engineer
PRO
0
140
Featured
See All Featured
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
150
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
47
A Soul's Torment
seathinner
5
2.2k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
400
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
340
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
57
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
The agentic SEO stack - context over prompts
schlessera
0
600
Six Lessons from altMBA
skipperchong
29
4.1k
[RailsConf 2023] Rails as a piece of cake
palkan
59
6.3k
Transcript
5PLZP3σʔλՄࢹԽ ॳ৺ऀηογϣϯ
ࣗݾհ w TPSJFOUF w *5اۀۈ w 3ྺ ࡉͬͯ͘͘·͢ɻ w
ͱ͍ͬͯ࠷ۙ1ZUIPO͕ϝΠϯ w 1)1ॻ͍ͯͨ࣌ظ͋Γ·ͨ͠ɻ
ՄࢹԽͱ w จࣈͷ௨Γɺݟ͑ΔԽ͢Δɻ σʔλੳͷจ຺ͰɺσʔλͷؔੑΛݟ͑ ΔԽ͢Δɻ w ՄࢹԽΛ͚ͨͩ͠ͰΘ͔Δ͜ͱଟ͍ɻ w ՄࢹԽΛ͢ΔͱɺΘ͔Γ͍͢ɻ
w ՄࢹԽΛͨ͋͠ͱʹԿΒ͔ͷҙࢥܾఆΛߦ͏͜ͱ͕ଟ͍ɻ ੳऀ͕ࣗҙࢥ ܾఆ͢Δ͜ͱɺ୭͔ʹҙࢥܾఆͯ͠Β͏͜ͱ͋Δɻ
None
HHQMPUͷجຊ
HHQMPUͱ w ՄࢹԽͷͨΊͷϥΠϒϥϦ w UJEZWFSTFͷϥΠϒϥϦ܈ͷҰͭ w ʰ5IF(SBNNBSPG(SBQIJDTʱΛϕʔεʹ࡞ΒΕ͍ͯΔ ˠҰ؏ੑͷ͋Δจ๏Ͱ߹ཧతʹॻ͚Δʂ
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
QFOHVJOT
HHQMPUΠϯετʔϧಡΈࠐΈ JOTUBMMQBDLBHFT HHQMPU JOTUBMMQBDLBHFT UJEZWFSTF ͰՄ MJCSBSZ HHQMPU MJCSBSZ UJEZWFSTF
ͰՄ
ࠓճॻ͘άϥϑͷछྨ w ࢄਤ w άϥϑ w ંΕઢάϥϑ
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
ࢄਤ ॻ͖ํओʹ3ύλʔϯ > ggplot(penguins, aes(x = bill_length_mm, y = bill_depth_mm))
+ geom_point() > ggplot(penguins) + geom_point(aes(x = bill_length_mm, y = bill_depth_mm)) > ggplot() + geom_point( data = penguins, aes(x = bill_length_mm, y = bill_depth_mm) )
ࠓճॻ͘άϥϑͷछྨ w ࢄਤ w ંΕઢάϥϑ w άϥϑ
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
σʔλूܭ MJCBSBSZ EQMZS QFOHVJOT@GPS@MJOFQFOHVJOT HSPVQ@CZ ZFBS TVNNBSJTF NFBO@NBTTNFBO
CPEZ@NBTT@H OBSN536& QFOHVJOT@GPS@MJOF ZFBS NFBO@NBTT
ંΕઢάϥϑ ॻ͖ํओʹ3ύλʔϯ > ggplot(penguins_for_line, aes(x = year, y = mean_mass))
+ geom_line() > penguins_for_line %>% ggplot() + geom_line(aes(x = year, y = mean_mass)) > ggplot(penguins_for_line) + geom_line(aes(x = year, y = mean_mass)) > ggplot() + geom_line( data = penguins_for_line, aes(x = year, y = mean_mass) )
άϥϑ ॻ͖ํ3ύλʔϯ > ggplot(penguins_for_line, aes(x = year, y = mean_mass))
+ geom_bar(stat = "identity") > ggplot(penguins_for_line) + geom_bar(aes(x = year, y = mean_mass), stat = "identity") > ggplot() + geom_bar( data = penguins_for_line, aes(x = year, y = mean_mass), stat = "identity") ҎԼͰՄ > ggplot() + geom_bar( data = penguins, aes(x = year, y = body_mass_g), stat = "summary", fun = "mean" )
ͦͷଞͷάϥϑɻɻɻ w άάΔ w ެࣜνʔτγʔτ IUUQTHJUIVCDPNSTUVEJPDIFBUTIFFUTCMPCNBTUFSEBUB WJTVBMJ[BUJPOQEG w 4MBDLͷSXBLBMBOH࣭
͍͔ͭ͘άϥϑॻ͍ͯΈͯ w λΠτϧ͚͍ͭͨɻ w ͕࣠ؾʹͳΔɻ
> ggplot() + geom_line( data = penguins_for_line, aes(x = year,
y = mean_mass) ) + ggtitle("ંΕઢάϥϑ") + theme_gray(base_family = "HiraKakuPro-W3") λΠτϧઃఆ
λΠτϧઃఆ > ggplot() + geom_line( data = penguins_for_line, aes(x =
year, y = mean_mass) ) + ggtitle("ંΕઢάϥϑ") + theme_gray(base_family = "HiraKakuPro-W3")
Y࣠ > ggplot() + geom_line( data = penguins_for_line, aes(x =
year, y = mean_mass)) + ggtitle("ંΕઢάϥϑ") + theme_gray(base_family = "HiraKakuPro-W3") + scale_x_continuous(breaks=seq(2007,2009,1))
Z࣠ > ggplot() + geom_line( data = penguins_for_line, aes(x =
year, y = mean_mass) ) + ggtitle("ࢄਤ") + theme_gray(base_family = "HiraKakuPro-W3") + scale_x_continuous( breaks = seq( min(penguins_for_line$year), max(penguins_for_line$year), 1 ) ) + ylim(0, 4300)
ࢄਤ छྨʹΑͬͯ৭͚͍ͨ > ggplot() + geom_point( data = penguins, aes(x
= bill_length_mm, y = bill_depth_mm, color = species) )
·ͱΊ w ՄࢹԽ͔ͳΓधཁͳύʔτ͕ͩɺ͍͠ɻ w άϥϑHHQMPU ͱHFPN@YYY Λ͏ͱॻ͘͜ͱ͕Ͱ͖Δɻ w ؔϓϥεͰͭͳ͙ɻ w
Γ͍ͨ͜ͱΛάάͬͯΈͯɺࢼͯ͠ΈͯɺΘ͔Βͳ͚Εɺ4MBDLͷSXBLBMBOHʹ࣭ͯͯ͠ Έ·͠ΐ͏ʂ
&/+0: