Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TokyoR#93
Search
soriente
July 03, 2021
Technology
0
250
TokyoR#93
TokyoR#93の初心者セッション可視化パートです。
soriente
July 03, 2021
Tweet
Share
Other Decks in Technology
See All in Technology
アクセスピークを制するオートスケール再設計: 障害を乗り越えKEDAで実現したリソース管理の最適化
myamashii
1
690
Figma Dev Mode MCP Serverを用いたUI開発
zoothezoo
0
230
組織内、組織間の資産保護に必要なアイデンティティ基盤と関連技術の最新動向
fujie
0
300
Maintainer Meetupで「生の声」を聞く ~講演だけじゃないKubeCon
logica0419
0
110
CDK Toolkit Libraryにおけるテストの考え方
smt7174
1
550
本当にわかりやすいAIエージェント入門
segavvy
4
1.1k
Digitization部 紹介資料
sansan33
PRO
1
4.5k
セキュアな社内Dify運用と外部連携の両立 ~AIによるAPIリスク評価~
zozotech
PRO
0
130
低レイヤソフトウェア技術者が YouTuberとして食っていこうとした話
sat
PRO
2
1.7k
SRE不在の開発チームが障害対応と 向き合った100日間 / 100 days dealing with issues without SREs
shin1988
2
2.1k
サービスを止めるな! DDoS攻撃へのスマートな備えと最前線の事例
coconala_engineer
1
190
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
18k
Featured
See All Featured
Product Roadmaps are Hard
iamctodd
PRO
54
11k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Done Done
chrislema
184
16k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
Facilitating Awesome Meetings
lara
54
6.5k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Rails Girls Zürich Keynote
gr2m
95
14k
Transcript
5PLZP3σʔλՄࢹԽ ॳ৺ऀηογϣϯ
ࣗݾհ w TPSJFOUF w *5اۀۈ w 3ྺ ࡉͬͯ͘͘·͢ɻ w
ͱ͍ͬͯ࠷ۙ1ZUIPO͕ϝΠϯ w 1)1ॻ͍ͯͨ࣌ظ͋Γ·ͨ͠ɻ
ՄࢹԽͱ w จࣈͷ௨Γɺݟ͑ΔԽ͢Δɻ σʔλੳͷจ຺ͰɺσʔλͷؔੑΛݟ͑ ΔԽ͢Δɻ w ՄࢹԽΛ͚ͨͩ͠ͰΘ͔Δ͜ͱଟ͍ɻ w ՄࢹԽΛ͢ΔͱɺΘ͔Γ͍͢ɻ
w ՄࢹԽΛͨ͋͠ͱʹԿΒ͔ͷҙࢥܾఆΛߦ͏͜ͱ͕ଟ͍ɻ ੳऀ͕ࣗҙࢥ ܾఆ͢Δ͜ͱɺ୭͔ʹҙࢥܾఆͯ͠Β͏͜ͱ͋Δɻ
None
HHQMPUͷجຊ
HHQMPUͱ w ՄࢹԽͷͨΊͷϥΠϒϥϦ w UJEZWFSTFͷϥΠϒϥϦ܈ͷҰͭ w ʰ5IF(SBNNBSPG(SBQIJDTʱΛϕʔεʹ࡞ΒΕ͍ͯΔ ˠҰ؏ੑͷ͋Δจ๏Ͱ߹ཧతʹॻ͚Δʂ
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
QFOHVJOT
HHQMPUΠϯετʔϧಡΈࠐΈ JOTUBMMQBDLBHFT HHQMPU JOTUBMMQBDLBHFT UJEZWFSTF ͰՄ MJCSBSZ HHQMPU MJCSBSZ UJEZWFSTF
ͰՄ
ࠓճॻ͘άϥϑͷछྨ w ࢄਤ w άϥϑ w ંΕઢάϥϑ
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
ࢄਤ ॻ͖ํओʹ3ύλʔϯ > ggplot(penguins, aes(x = bill_length_mm, y = bill_depth_mm))
+ geom_point() > ggplot(penguins) + geom_point(aes(x = bill_length_mm, y = bill_depth_mm)) > ggplot() + geom_point( data = penguins, aes(x = bill_length_mm, y = bill_depth_mm) )
ࠓճॻ͘άϥϑͷछྨ w ࢄਤ w ંΕઢάϥϑ w άϥϑ
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
σʔλूܭ MJCBSBSZ EQMZS QFOHVJOT@GPS@MJOFQFOHVJOT HSPVQ@CZ ZFBS TVNNBSJTF NFBO@NBTTNFBO
CPEZ@NBTT@H OBSN536& QFOHVJOT@GPS@MJOF ZFBS NFBO@NBTT
ંΕઢάϥϑ ॻ͖ํओʹ3ύλʔϯ > ggplot(penguins_for_line, aes(x = year, y = mean_mass))
+ geom_line() > penguins_for_line %>% ggplot() + geom_line(aes(x = year, y = mean_mass)) > ggplot(penguins_for_line) + geom_line(aes(x = year, y = mean_mass)) > ggplot() + geom_line( data = penguins_for_line, aes(x = year, y = mean_mass) )
άϥϑ ॻ͖ํ3ύλʔϯ > ggplot(penguins_for_line, aes(x = year, y = mean_mass))
+ geom_bar(stat = "identity") > ggplot(penguins_for_line) + geom_bar(aes(x = year, y = mean_mass), stat = "identity") > ggplot() + geom_bar( data = penguins_for_line, aes(x = year, y = mean_mass), stat = "identity") ҎԼͰՄ > ggplot() + geom_bar( data = penguins, aes(x = year, y = body_mass_g), stat = "summary", fun = "mean" )
ͦͷଞͷάϥϑɻɻɻ w άάΔ w ެࣜνʔτγʔτ IUUQTHJUIVCDPNSTUVEJPDIFBUTIFFUTCMPCNBTUFSEBUB WJTVBMJ[BUJPOQEG w 4MBDLͷSXBLBMBOH࣭
͍͔ͭ͘άϥϑॻ͍ͯΈͯ w λΠτϧ͚͍ͭͨɻ w ͕࣠ؾʹͳΔɻ
> ggplot() + geom_line( data = penguins_for_line, aes(x = year,
y = mean_mass) ) + ggtitle("ંΕઢάϥϑ") + theme_gray(base_family = "HiraKakuPro-W3") λΠτϧઃఆ
λΠτϧઃఆ > ggplot() + geom_line( data = penguins_for_line, aes(x =
year, y = mean_mass) ) + ggtitle("ંΕઢάϥϑ") + theme_gray(base_family = "HiraKakuPro-W3")
Y࣠ > ggplot() + geom_line( data = penguins_for_line, aes(x =
year, y = mean_mass)) + ggtitle("ંΕઢάϥϑ") + theme_gray(base_family = "HiraKakuPro-W3") + scale_x_continuous(breaks=seq(2007,2009,1))
Z࣠ > ggplot() + geom_line( data = penguins_for_line, aes(x =
year, y = mean_mass) ) + ggtitle("ࢄਤ") + theme_gray(base_family = "HiraKakuPro-W3") + scale_x_continuous( breaks = seq( min(penguins_for_line$year), max(penguins_for_line$year), 1 ) ) + ylim(0, 4300)
ࢄਤ छྨʹΑͬͯ৭͚͍ͨ > ggplot() + geom_point( data = penguins, aes(x
= bill_length_mm, y = bill_depth_mm, color = species) )
·ͱΊ w ՄࢹԽ͔ͳΓधཁͳύʔτ͕ͩɺ͍͠ɻ w άϥϑHHQMPU ͱHFPN@YYY Λ͏ͱॻ͘͜ͱ͕Ͱ͖Δɻ w ؔϓϥεͰͭͳ͙ɻ w
Γ͍ͨ͜ͱΛάάͬͯΈͯɺࢼͯ͠ΈͯɺΘ͔Βͳ͚Εɺ4MBDLͷSXBLBMBOHʹ࣭ͯͯ͠ Έ·͠ΐ͏ʂ
&/+0: