Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2024/12/05 AITuber本著者によるAIキャラクター入門 - AITuberの基礎...
Search
Sald ra
December 05, 2024
Technology
2
940
2024/12/05 AITuber本著者によるAIキャラクター入門 - AITuberの基礎からソフトウェア設計、失敗談まで
2024/12/05 にStudyCoさんにて行われた「AITuber本著者によるAIキャラクター入門」の資料
https://studyco.connpass.com/event/337404/
Sald ra
December 05, 2024
Tweet
Share
More Decks by Sald ra
See All by Sald ra
2023/07/26 - AITuberコミュニティの 開放性と閉鎖性
sr2mg4
1
82
AIキャラについての諸考察
sr2mg4
1
390
2023 AIAD忘年会LT 資料
sr2mg4
0
1.2k
2023/09/23 「AIキャラクターの言動に深みを持たせる」
sr2mg4
2
1.1k
AIキャラクター開発の側面から見る 新機能実装・検証の高速化の必要性
sr2mg4
1
950
ローカルAITuber勢の現在地と未来
sr2mg4
0
520
Other Decks in Technology
See All in Technology
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
150
Context Engineeringが企業で不可欠になる理由
hirosatogamo
PRO
3
620
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
2
380
超初心者からでも大丈夫!オープンソース半導体の楽しみ方〜今こそ!オレオレチップをつくろう〜
keropiyo
0
110
セキュリティについて学ぶ会 / 2026 01 25 Takamatsu WordPress Meetup
rocketmartue
1
310
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.4k
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
1
2.8k
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
Greatest Disaster Hits in Web Performance
guaca
0
270
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
200
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
480
量子クラウドサービスの裏側 〜Deep Dive into OQTOPUS〜
oqtopus
0
130
Featured
See All Featured
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
320
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2.1k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
10
1.1k
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
150
4 Signs Your Business is Dying
shpigford
187
22k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Evolving SEO for Evolving Search Engines
ryanjones
0
130
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
150
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
2
250
A designer walks into a library…
pauljervisheath
210
24k
KATA
mclloyd
PRO
34
15k
Transcript
AIキャラクター入門 AITuberの基礎からソフトウェア設計、失敗談まで
自己紹介
AITuberとは
AITuberとは AITuberとは「ネット活動を行うAIキャラ」です • イメージ的には「AI」x「VTuber」に近い • 2023年初頭のOpenAIのAPI出現以降に活発になったジャンル
みた方が早い
基本的な技術 色々なことはできるとして、最低要件から考えてみる 最低要件は「YouTubeと紐づけてコメントに反応し、発話する」になるはず • コメントつなぎこみ • LLMつなぎこみ • 音声合成・再生 •
OBS連携 ここまでを簡易的に実装できるのがAITuberプロンプト本
どう実装してるか 見てみよう
AITuber本でのアーキテクチャ
AITuber本でのアーキテクチャ • エントリー・ポイントがAITuberSystem ◦ コメント取得から発話までが1ターン ◦ 逐次処理 • 発話内容作成がtalker •
VoiceMakerでt2sのwavに変換 • play_soundで仮想マイク再生 • OBSで発話内容を表示
AITuber本でのアーキテクチャ • usecase ◦ talker • interface ◦ voice_maker •
Frameworks & Drivers ◦ OBSAdapter ◦ play_sound ◦ OpenAIAdapter ◦ YouTubeCommentAdapter
どこが問題だろう?
問題点 • interfaceとFrameworks & Driversがごっちゃ • OpenAIの責務をきちんと分けよう ◦ 音声合成とChatを同じクラスで行わない ◦
OpenAI APIでできることが多いのが悪い • AITuberSystemが神クラスになってる ◦ outputはusecaseに紐づいているべきでは ◦ Commentが必要なのはtalkerであり、Systemではない とはいえガッツリ層を分ける必要があるかは疑問 非同期処理にするかは要考慮
どうするのが正解なんだろう • 結論から言うと「試行錯誤するしかない」 • 先ほどのものを変更してみた ◦ outputをまとめて、各usecaseに対応 ◦ OpenAIのAdapter分離 ◦
実際のつなぎこみはClientに任せる • ありえる未来を追加要件にしてみる ◦ singerというusecaseを追加 ▪ こいつはCommentに非依存 設計をしたい人にとってはAITuberは絶好の教材かも
とはいえどこかで 妥協は必要
AITuberの壁の話
AITuberの壁 • 第一の壁「そもそもどうやって作れば良いかわからない」 ◦ 割と解決に向かっている • 第二の壁「単純なQAだけだとつまらない」 ◦ アイデアをどうにかして出し続けるしかない。いつか話すが省略 •
第三の壁「普通に運用コスト高い」 ◦ 一番やばい壁! 第三の壁について話します
なぜ僕は個人で AITuberを作らなくなったか
運用・メンテコストの増大
個人開発末期状態(2023/06) • 疎結合にはなってる ◦ 各サービスの起動コスト上昇 • Unityにしたことでの開発工数上昇 ◦ URPなんもわからん •
独自路線すぎた合成音声 ◦ SBV2なかったからVITS+RVC • GPU負荷高すぎ • ローカルはプロンプト効かない • context-sizeが8kなかった(解決済) 参考:AITuberさくら構築図。2024にllm-jp-3に換装だけした
大事なこと • 「気軽に配信を始められる」は絶対に担保しておくこと • デファクトスタンダードに乗っておけ!絶対後悔する(オーパーツは作れる) ◦ 気軽にやるならVOICEVOX。今だったらAivisSpeechもにじボイスもある ◦ 「プロンプトさえ変えれば同じモデルで色々なことができる」は偉大 ▪
なるべくPromptingで解決しておけ、ローカルは浪漫だか茨の道 ▪ PromptingでできることはAITuberプロンプト本に書いたはず • 自分の力量をきちんと把握しておくこと ◦ LLMでなんでもできるようになった、ただし時間は有限である ◦ その拘りは他の工数を削ってでもやりたいことかは常に考える ▪ (UnityのURPまで僕はやるべきだっただろうか...)
以上!