structures. Behaviormetrika, 41(1):65–98, 2014. Shohei Shimizu. Statistical Causal Discovery: LiNGAM Approach. Springer, Tokyo, 2022. Shohei Shimizu, Patrik O. Hoyer, Aapo Hyv¨ arinen, and Antti Kerminen. A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7:2003–2030, 2006. Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search. MIT Press, 2001. 2nd ed. D. Takahashi, S. Shimizu, and T. Tanaka. Counterfactual explanations of black-box machine learning models using causal discovery with applications to credit rating. In Proc. Int. Joint Conf. on Neural Networks (IJCNN2024), part of the 2024 IEEE World Congress on Computational Intelligence (WCCI2024), 2024. Masayuki Takayama, Tadahisa Okuda, Thong Pham, Tatsuyoshi Ikenoue, Shingo Fukuma, Shohei Shimizu, and Akiyoshi Sannai. Integrating large language models in causal discovery: A statistical causal approach. arXiv preprint arXiv:2402.01454, 2024. Tatsuya Tashiro, Shohei Shimizu, Aapo Hyv¨ arinen, and Takashi Washio. ParceLiNGAM: A causal ordering method robust against latent confounders. Neural Computation, 26(1): 57–83, 2014. Y. Samuel Wang and Mathias Drton. Causal discovery with unobserved confounding and non-gaussian data. Journal of Machine Learning Research, 24(271):1–61, 2023. URL http://jmlr.org/papers/v24/21-1329.html. SHIMIZU Shohei (Shiga Univ & RIKEN) 5th July 2024 16 / 17