Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Collaborative Topic Modeling for Recommending S...
Search
Shinichi Takayanagi
May 30, 2016
Research
0
1.4k
Collaborative Topic Modeling for Recommending Scientific Articles
論文"Collaborative Topic Modeling for Recommending Scientific Articles"を読んだ際に使用したスライド
Shinichi Takayanagi
May 30, 2016
Tweet
Share
More Decks by Shinichi Takayanagi
See All by Shinichi Takayanagi
[NeurIPS 2023 論文読み会] Wasserstein Quantum Monte Carlo
stakaya
0
500
[KDD2021 論文読み会] ControlBurn: Feature Selection by Sparse Forests
stakaya
2
1.9k
[ICML2021 論文読み会] Mandoline: Model Evaluation under Distribution Shift
stakaya
0
2k
[情報検索/推薦 各社合同 論文読み祭 #1] KDD ‘20 "Embedding-based Retrieval in Facebook Search"
stakaya
2
590
【2020年新人研修資料】ナウでヤングなPython開発入門
stakaya
29
21k
論文読んだ「Simple and Deterministic Matrix Sketching」
stakaya
1
1.1k
Quick Introduction to Approximate Bayesian Computation (ABC) with R"
stakaya
3
320
The Road to Machine Learning Engineer from Data Scientist
stakaya
5
4.3k
論文読んだ「Winner’s Curse: Bias Estimation for Total Effects of Features in Online Controlled Experiments」
stakaya
1
4.7k
Other Decks in Research
See All in Research
インドネシアのQA事情を紹介するの
yujijs
0
180
Weekly AI Agents News! 12月号 論文のアーカイブ
masatoto
0
290
LLM 시대의 Compliance: Safety & Security
huffon
0
640
The Economics of Platforms 輪読会 第1章
tomonatu8
0
170
研究テーマのデザインと研究遂行の方法論
hisashiishihara
5
1.1k
Trust No Bot? Forging Confidence in AI for Software Engineering
tomzimmermann
1
180
Mathematics in the Age of AI and the 4 Generation University
hachama
0
140
作業記憶の発達的特性が言語獲得の臨界期を形成する(NLP2025)
chemical_tree
2
490
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
130
請求書仕分け自動化での物体検知モデル活用 / Utilization of Object Detection Models in Automated Invoice Sorting
sansan_randd
0
170
Scale-Aware Recognition in Satellite images Under Resource Constraints
satai
3
180
eAI (Engineerable AI) プロジェクトの全体像 / Overview of eAI Project
ishikawafyu
0
450
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
5
550
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.3k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.6k
Code Reviewing Like a Champion
maltzj
523
40k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.4k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.2k
KATA
mclloyd
29
14k
Building Adaptive Systems
keathley
41
2.5k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.4k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Transcript
RCO論文輪読会(2016/05/27) “Collaborative topic modeling for recommending scientific articles”(KDD2011) Chong Wang,
David M. Blei 高柳慎一
(C)Recruit Communications Co., Ltd. ABSTRACT 1
(C)Recruit Communications Co., Ltd. 1. INTRODUCTION 2
(C)Recruit Communications Co., Ltd. 1. INTRODUCTION 3
(C)Recruit Communications Co., Ltd. 1. INTRODUCTION 4
(C)Recruit Communications Co., Ltd. 2. BACKGROUND & 2.1 Recommendation Tasks
5
(C)Recruit Communications Co., Ltd. 2.1 Recommendation Tasks 6
(C)Recruit Communications Co., Ltd. 2.1 Recommendation Tasks 7
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 8
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 9
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 10
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 11
(C)Recruit Communications Co., Ltd. 2.3 Probabilistic Topic Models 12
(C)Recruit Communications Co., Ltd. LDAの生成過程 13
(C)Recruit Communications Co., Ltd. LDAの特徴 14
(C)Recruit Communications Co., Ltd. 3. COLLABORATIVE TOPIC REGRESSION 15
(C)Recruit Communications Co., Ltd. COLLABORATIVE TOPIC REGRESSION 16
(C)Recruit Communications Co., Ltd. CTRの生成過程 17
(C)Recruit Communications Co., Ltd. 3. COLLABORATIVE TOPIC REGRESSION 18
(C)Recruit Communications Co., Ltd. CTRのモデルのRegressionたる所以 19
(C)Recruit Communications Co., Ltd. 学習のさせ方 20
(C)Recruit Communications Co., Ltd. 学習のさせ方 21
(C)Recruit Communications Co., Ltd. 簡単な証明 by iPad手書き 22
(C)Recruit Communications Co., Ltd. 学習のさせ方 23
(C)Recruit Communications Co., Ltd. 予測 24
(C)Recruit Communications Co., Ltd. 4. EMPIRICAL STUDY 25
(C)Recruit Communications Co., Ltd. データの規模感 26
(C)Recruit Communications Co., Ltd. 評価 27
(C)Recruit Communications Co., Ltd. 結果 28
(C)Recruit Communications Co., Ltd. 結果 (ライブラリ内の論文数(Fig 5)・ある論文をLikeした数(Fig 6) 依存性) 29
数が増えると Recallが下がる (あまり有名な論文じゃ ないのを出すため) 数が増えると Recallが上がる (みんな見てる論文 だとCFがうまく動く)
(C)Recruit Communications Co., Ltd. 結果(ある2ユーザの好んだトピックを抽出) 30 トピックの潜 在ベクトルの 重みをランキ ングして抽出
(C)Recruit Communications Co., Ltd. 結果(オフセットの大きかった論文BEST 10) 31 ※内容よりもCFが効くケースに相当
(C)Recruit Communications Co., Ltd. 結果(EMの論文がベイズ統計勢にもよく参照されている例) 32 ※内容よりもCFが効く ケースに相当
(C)Recruit Communications Co., Ltd. 結果(逆にトピックが広がらない例) 33 ※内容が支配的なケー スに相当
(C)Recruit Communications Co., Ltd. 5. CONCLUSIONS AND FUTURE WORK 34