Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Collaborative Topic Modeling for Recommending S...
Search
Shinichi Takayanagi
May 30, 2016
Research
0
1.4k
Collaborative Topic Modeling for Recommending Scientific Articles
論文"Collaborative Topic Modeling for Recommending Scientific Articles"を読んだ際に使用したスライド
Shinichi Takayanagi
May 30, 2016
Tweet
Share
More Decks by Shinichi Takayanagi
See All by Shinichi Takayanagi
[NeurIPS 2023 論文読み会] Wasserstein Quantum Monte Carlo
stakaya
0
440
[KDD2021 論文読み会] ControlBurn: Feature Selection by Sparse Forests
stakaya
2
1.8k
[ICML2021 論文読み会] Mandoline: Model Evaluation under Distribution Shift
stakaya
0
1.9k
[情報検索/推薦 各社合同 論文読み祭 #1] KDD ‘20 "Embedding-based Retrieval in Facebook Search"
stakaya
2
550
【2020年新人研修資料】ナウでヤングなPython開発入門
stakaya
28
20k
論文読んだ「Simple and Deterministic Matrix Sketching」
stakaya
1
1.1k
Quick Introduction to Approximate Bayesian Computation (ABC) with R"
stakaya
3
280
The Road to Machine Learning Engineer from Data Scientist
stakaya
5
4.2k
論文読んだ「Winner’s Curse: Bias Estimation for Total Effects of Features in Online Controlled Experiments」
stakaya
1
4.6k
Other Decks in Research
See All in Research
Composed image retrieval for remote sensing
satai
2
130
12
0325
0
200
Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve
eumesy
PRO
7
1.2k
情報処理学会関西支部2024年度定期講演会「自然言語処理と大規模言語モデルの基礎」
ksudoh
10
2.1k
文化が形作る音楽推薦の消費と、その逆
kuri8ive
0
200
ミニ四駆AI用制御装置の事例紹介
aks3g
0
180
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
8
1k
移動ビッグデータに基づく地理情報の埋め込みベクトル化
tam1110
0
160
国際会議ACL2024参加報告
chemical_tree
1
350
[ECCV2024読み会] 衛星画像からの地上画像生成
elith
1
900
2024/10/30 産総研AIセミナー発表資料
keisuke198619
1
380
Weekly AI Agents News! 9月号 プロダクト/ニュースのアーカイブ
masatoto
2
170
Featured
See All Featured
A Philosophy of Restraint
colly
203
16k
The Cost Of JavaScript in 2023
addyosmani
45
7k
A better future with KSS
kneath
238
17k
Building a Scalable Design System with Sketch
lauravandoore
460
33k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
Imperfection Machines: The Place of Print at Facebook
scottboms
266
13k
Navigating Team Friction
lara
183
15k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
The Invisible Side of Design
smashingmag
298
50k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Transcript
RCO論文輪読会(2016/05/27) “Collaborative topic modeling for recommending scientific articles”(KDD2011) Chong Wang,
David M. Blei 高柳慎一
(C)Recruit Communications Co., Ltd. ABSTRACT 1
(C)Recruit Communications Co., Ltd. 1. INTRODUCTION 2
(C)Recruit Communications Co., Ltd. 1. INTRODUCTION 3
(C)Recruit Communications Co., Ltd. 1. INTRODUCTION 4
(C)Recruit Communications Co., Ltd. 2. BACKGROUND & 2.1 Recommendation Tasks
5
(C)Recruit Communications Co., Ltd. 2.1 Recommendation Tasks 6
(C)Recruit Communications Co., Ltd. 2.1 Recommendation Tasks 7
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 8
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 9
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 10
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 11
(C)Recruit Communications Co., Ltd. 2.3 Probabilistic Topic Models 12
(C)Recruit Communications Co., Ltd. LDAの生成過程 13
(C)Recruit Communications Co., Ltd. LDAの特徴 14
(C)Recruit Communications Co., Ltd. 3. COLLABORATIVE TOPIC REGRESSION 15
(C)Recruit Communications Co., Ltd. COLLABORATIVE TOPIC REGRESSION 16
(C)Recruit Communications Co., Ltd. CTRの生成過程 17
(C)Recruit Communications Co., Ltd. 3. COLLABORATIVE TOPIC REGRESSION 18
(C)Recruit Communications Co., Ltd. CTRのモデルのRegressionたる所以 19
(C)Recruit Communications Co., Ltd. 学習のさせ方 20
(C)Recruit Communications Co., Ltd. 学習のさせ方 21
(C)Recruit Communications Co., Ltd. 簡単な証明 by iPad手書き 22
(C)Recruit Communications Co., Ltd. 学習のさせ方 23
(C)Recruit Communications Co., Ltd. 予測 24
(C)Recruit Communications Co., Ltd. 4. EMPIRICAL STUDY 25
(C)Recruit Communications Co., Ltd. データの規模感 26
(C)Recruit Communications Co., Ltd. 評価 27
(C)Recruit Communications Co., Ltd. 結果 28
(C)Recruit Communications Co., Ltd. 結果 (ライブラリ内の論文数(Fig 5)・ある論文をLikeした数(Fig 6) 依存性) 29
数が増えると Recallが下がる (あまり有名な論文じゃ ないのを出すため) 数が増えると Recallが上がる (みんな見てる論文 だとCFがうまく動く)
(C)Recruit Communications Co., Ltd. 結果(ある2ユーザの好んだトピックを抽出) 30 トピックの潜 在ベクトルの 重みをランキ ングして抽出
(C)Recruit Communications Co., Ltd. 結果(オフセットの大きかった論文BEST 10) 31 ※内容よりもCFが効くケースに相当
(C)Recruit Communications Co., Ltd. 結果(EMの論文がベイズ統計勢にもよく参照されている例) 32 ※内容よりもCFが効く ケースに相当
(C)Recruit Communications Co., Ltd. 結果(逆にトピックが広がらない例) 33 ※内容が支配的なケー スに相当
(C)Recruit Communications Co., Ltd. 5. CONCLUSIONS AND FUTURE WORK 34