Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Collaborative Topic Modeling for Recommending S...
Search
Shinichi Takayanagi
May 30, 2016
Research
0
1.5k
Collaborative Topic Modeling for Recommending Scientific Articles
論文"Collaborative Topic Modeling for Recommending Scientific Articles"を読んだ際に使用したスライド
Shinichi Takayanagi
May 30, 2016
Tweet
Share
More Decks by Shinichi Takayanagi
See All by Shinichi Takayanagi
バイブコーディングの正体——AIエージェントはソフトウェア開発を変えるか?
stakaya
5
1.2k
[NeurIPS 2023 論文読み会] Wasserstein Quantum Monte Carlo
stakaya
0
530
[KDD2021 論文読み会] ControlBurn: Feature Selection by Sparse Forests
stakaya
2
1.9k
[ICML2021 論文読み会] Mandoline: Model Evaluation under Distribution Shift
stakaya
0
2k
[情報検索/推薦 各社合同 論文読み祭 #1] KDD ‘20 "Embedding-based Retrieval in Facebook Search"
stakaya
2
620
【2020年新人研修資料】ナウでヤングなPython開発入門
stakaya
29
21k
論文読んだ「Simple and Deterministic Matrix Sketching」
stakaya
1
1.2k
Quick Introduction to Approximate Bayesian Computation (ABC) with R"
stakaya
3
350
The Road to Machine Learning Engineer from Data Scientist
stakaya
5
4.4k
Other Decks in Research
See All in Research
PhD Defense 2025: Visual Understanding of Human Hands in Interactions
tkhkaeio
1
190
2021年度-基盤研究B-研究計画調書
trycycle
PRO
0
300
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
240
CVPR2025論文紹介:Unboxed
murakawatakuya
0
150
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
170
数理最適化に基づく制御
mickey_kubo
6
730
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
210
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
240
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
0
170
問いを起点に、社会と共鳴する知を育む場へ
matsumoto_r
PRO
0
610
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
960
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
210
Featured
See All Featured
Producing Creativity
orderedlist
PRO
347
40k
A Tale of Four Properties
chriscoyier
160
23k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
What's in a price? How to price your products and services
michaelherold
246
12k
Agile that works and the tools we love
rasmusluckow
330
21k
Thoughts on Productivity
jonyablonski
70
4.8k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
530
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Transcript
RCO論文輪読会(2016/05/27) “Collaborative topic modeling for recommending scientific articles”(KDD2011) Chong Wang,
David M. Blei 高柳慎一
(C)Recruit Communications Co., Ltd. ABSTRACT 1
(C)Recruit Communications Co., Ltd. 1. INTRODUCTION 2
(C)Recruit Communications Co., Ltd. 1. INTRODUCTION 3
(C)Recruit Communications Co., Ltd. 1. INTRODUCTION 4
(C)Recruit Communications Co., Ltd. 2. BACKGROUND & 2.1 Recommendation Tasks
5
(C)Recruit Communications Co., Ltd. 2.1 Recommendation Tasks 6
(C)Recruit Communications Co., Ltd. 2.1 Recommendation Tasks 7
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 8
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 9
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 10
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 11
(C)Recruit Communications Co., Ltd. 2.3 Probabilistic Topic Models 12
(C)Recruit Communications Co., Ltd. LDAの生成過程 13
(C)Recruit Communications Co., Ltd. LDAの特徴 14
(C)Recruit Communications Co., Ltd. 3. COLLABORATIVE TOPIC REGRESSION 15
(C)Recruit Communications Co., Ltd. COLLABORATIVE TOPIC REGRESSION 16
(C)Recruit Communications Co., Ltd. CTRの生成過程 17
(C)Recruit Communications Co., Ltd. 3. COLLABORATIVE TOPIC REGRESSION 18
(C)Recruit Communications Co., Ltd. CTRのモデルのRegressionたる所以 19
(C)Recruit Communications Co., Ltd. 学習のさせ方 20
(C)Recruit Communications Co., Ltd. 学習のさせ方 21
(C)Recruit Communications Co., Ltd. 簡単な証明 by iPad手書き 22
(C)Recruit Communications Co., Ltd. 学習のさせ方 23
(C)Recruit Communications Co., Ltd. 予測 24
(C)Recruit Communications Co., Ltd. 4. EMPIRICAL STUDY 25
(C)Recruit Communications Co., Ltd. データの規模感 26
(C)Recruit Communications Co., Ltd. 評価 27
(C)Recruit Communications Co., Ltd. 結果 28
(C)Recruit Communications Co., Ltd. 結果 (ライブラリ内の論文数(Fig 5)・ある論文をLikeした数(Fig 6) 依存性) 29
数が増えると Recallが下がる (あまり有名な論文じゃ ないのを出すため) 数が増えると Recallが上がる (みんな見てる論文 だとCFがうまく動く)
(C)Recruit Communications Co., Ltd. 結果(ある2ユーザの好んだトピックを抽出) 30 トピックの潜 在ベクトルの 重みをランキ ングして抽出
(C)Recruit Communications Co., Ltd. 結果(オフセットの大きかった論文BEST 10) 31 ※内容よりもCFが効くケースに相当
(C)Recruit Communications Co., Ltd. 結果(EMの論文がベイズ統計勢にもよく参照されている例) 32 ※内容よりもCFが効く ケースに相当
(C)Recruit Communications Co., Ltd. 結果(逆にトピックが広がらない例) 33 ※内容が支配的なケー スに相当
(C)Recruit Communications Co., Ltd. 5. CONCLUSIONS AND FUTURE WORK 34