Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
IP66_EvacuationLearning
Search
SatokiMasuda
November 18, 2024
Research
0
21
IP66_EvacuationLearning
第66回土木計画学研究発表会・秋大会の発表資料です。「異質性に着目した強化学習に基づく動的避難目的地選択モデル」
SatokiMasuda
November 18, 2024
Tweet
Share
More Decks by SatokiMasuda
See All by SatokiMasuda
kanazawa2024
stkmsd
0
22
hksts2024
stkmsd
0
13
IP70_counterfactual_machine_learning
stkmsd
0
23
ip68_LocationGame
stkmsd
0
17
ip67_MFDRL_evacuation
stkmsd
0
23
CPIJ2024_DisasterLocationGame
stkmsd
0
33
jasdis-HospitalEvacuation
stkmsd
0
22
TRC30-CombinatorialReconfiguration
stkmsd
0
15
hksts2023_AlphaZeroLocationGame
stkmsd
0
15
Other Decks in Research
See All in Research
NeurIPS 2024 参加報告 & 論文紹介 (SACPO, Ctrl-G)
reisato12345
0
360
セミコン地域における総合交通戦略
trafficbrain
0
120
ベイズ的方法に基づく統計的因果推論の基礎
holyshun
0
840
BtoB プロダクトにおけるインサイトマネジメントの必要性 現場ドリブンなカミナシがインサイトマネジメントに取り組むワケ / Why field-driven Kaminashi is working on insight management
kaminashi
1
310
情報処理学会関西支部2024年度定期講演会「自然言語処理と大規模言語モデルの基礎」
ksudoh
10
2.6k
[ECCV2024読み会] 衛星画像からの地上画像生成
elith
1
1.1k
Data-centric AI勉強会 「ロボットにおけるData-centric AI」
haraduka
0
490
IM2024
mamoruk
0
240
博士学位論文予備審査 / Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining
yuukit
1
1.7k
Retrieval of Hurricane Rain Rate From SAR Images Based on Artificial Neural Network
satai
3
170
[輪講] Transformer Layers as Painters
nk35jk
4
700
Neural Fieldの紹介
nnchiba
2
740
Featured
See All Featured
KATA
mclloyd
29
14k
GitHub's CSS Performance
jonrohan
1030
460k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.8k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
1.1k
YesSQL, Process and Tooling at Scale
rocio
172
14k
Unsuck your backbone
ammeep
669
57k
The Invisible Side of Design
smashingmag
299
50k
Mobile First: as difficult as doing things right
swwweet
223
9.5k
Transcript
ҟ࣭ੑʹணͨ͠ڧԽֶशʹجͮ͘ ಈతආతબϞσϧ ˓ ૿ా ܛथ ౦ژେֶֶܥݚڀՊ ະདྷ גࣜձࣾ๛ాதԝݚڀॴ Ӌ౻
ӳೋ ౦ژେֶֶܥݚڀՊ 12 ަ௨ωοτϫʔΫੳηογϣϯ 2022.11.12 16:45-18:15 ୈ9ձ ୈճܭըֶݚڀൃදձɾळେձ!ླྀٿେֶ
ආͷωοτϫʔΫσβΠϯɾ੍ޚ 2 ࡂ࣌ʹಥൃతͳधཁ͕ൃੜ͠ɺωοτϫʔΫ༰ྔΛա ةݥେ ةݥத ةݥখ
ආͷωοτϫʔΫσβΠϯɾ੍ޚ Øࡂ࣌ͷใఏڙσβΠϯ Øࡂؒͷආ܇࿅ͷ࠷దઃܭ 3 બͷҟ࣭ੑΛ׆༻ͨ͠ආަ௨ͷΈ߹Θͤ࠷ద ةݥେ ةݥத ةݥখ ใͷֶशաఔͱߦಈม༰ΛϞσϧԽ͠ɺ੍ޚʹ׆༻͢Δ
ֶशաఔͷදݱ – ڧԽֶश ΤʔδΣϯτ͕ڧԽֶशΛߦ͏ͱ͢Δͱɺ ߦಈͱใुͷ֫ಘΛ܁Γฦ͠ɺ࠷దͳํࡦΛֶश͍ͯ͘͠ → ʮඇආʯঢ়ଶʹ͋Δ࣌ɺظใु͕࠷ߴ͍ঢ়ଶભҠΛֶश 4 ࣌ؒ ֶशᶃ
ආޮ༻ 𝑣 ආ ᶄ Ұํɺਓؒڥ͔Β࠷దํࡦΛֶͳ͍͜ͱɺֶशΛ٫ ͢Δ͜ͱ͕͋Δɻ
ֶशաఔͷදݱ – day-to-dayͷܦ࿏બ ܦ࿏બߦಈʹؔ͢Δ࣮ݧ࣮ࣨݧͷݚڀ͕ߦΘΕ͖ͯͨ • ܁Γฦ͠ʹΑΔश׳Խ Bogers, Bierlaire, Hoogendoorn (2007)
• ϕΠζϧʔϧʹΑΔೝͷߋ৽ Jha, Madanat, Peeta (1998) • Horowitz (1984) – ֶशʹΑΔཱྀ֮ߦ࣌ؒͷܗΛදݱ 5 𝑢!" = 𝛽#!$% $ & "'( 𝑤& 𝑇!& + 𝜖!" աڈͷཱྀߦ࣌ؒͷॏΈ͖ฏۉ 𝑤& ͷઃఆʹΑΓ͞·͟·ͳදݱ͕Մೳɻ ex) ͍ۙաڈͷܦݧ΄ͲॏΈ͚ ü ॏΈ 𝑤& ੳऀ͕ઃఆ͢Δ ü ࡂ܇࿅ຖ܁Γฦ͞ΕΔֶशͰͳ͍ ຊݚڀͰ𝑤! Λ٫ͱଊ͑ɺೝֶशաఔΛද͢ॏཁͳ ύϥϝʔλͱͯ͠ਪఆ͢Δ
ຊݚڀͷয త ใͷֶशͱ٫Λߟྀͨ͠ආωοτϫʔΫ੍ޚ nڧԽֶशɾday-to-dayͷܦ࿏બͷֶश • աڈͷܦݧ֎෦ใʹΑΔ֮ߦಈنൣܗ Øֶशִ͕͍ؒ߹ͷɺֶशͱ٫ͷهड़ͱ༧ଌ͕ඞཁ n ආߦಈͷੳ •
܇࿅ใఏڙલޙͷҙมԽͷੳ ØޮՌͷ࣋ଓͷੳ͕ෆՄܽ ࡂكগࣄΏֶ͑शͱ٫ΛϞσϦϯά͠ɺ࣮ݧσʔλʹΑΔ ύϥϝʔλਪఆͰֶशաఔͷಛΛ໌Β͔ʹ͢Δɻ 6
ֶशաఔͷදݱ 7 ࣌ؒ ֶशᶃ 𝑣) ࣌ؒͱͱʹޮՌݮ ٫ ආޮ༻ 𝑣
ආ
ֶशաఔͷදݱ 8 ࣌ؒ ੳ࣌ 𝑣) ࣌ؒͱͱʹޮՌݮ ٫ ආޮ༻ 𝑣 ආ
ֶशᶃ
ֶशաఔͷදݱ 9 ආޮ༻ 𝑣 ආ ࣌ؒ ੳ࣌ 𝑣) 𝜆 𝑣避難
= 𝑣" +𝜆𝛿学習 ֶशޮՌൈ͖ͷ ޮ༻ͷ֬ఆ߲ ֶशܦݧ͕͋Ε ͳ͚Εͷม ֶशᶃ
ֶशաఔͷදݱ 10 ࣌ؒ ੳ࣌ 𝑣) 𝜆 ਅͷޮՌ 𝑣避難 = 𝑣"
+𝜆𝛿学習 ֶशޮՌൈ͖ͷ ޮ༻ͷ֬ఆ߲ ֶशܦݧ͕͋Ε ͳ͚Εͷม ආޮ༻ 𝑣 ආ ܦݧΛ୯७ʹઆ໌มʹؚΊΔ͚ͩͰ ֶशͷޮՌΛաখධՁͯ͠͠·͏ ֶशᶃ
ֶशաఔͷදݱ – ఏҊ 11 ࣌ؒ ֶशᶃ ̅ 𝜆 ආޮ༻ 𝑣
ආ ੳ࣌ ୯Ґ࣌ؒ 𝑣)
ֶशաఔͷදݱ – ఏҊ 12 ࣌ؒ 𝑣) ̅ 𝜆 ආޮ༻ 𝑣
ආ ੳ࣌ 𝛾 ̅ 𝜆 𝛾* ̅ 𝜆 𝛾+ ̅ 𝜆 ੳ࣌Ͱͷ ֶशᶃͷޮՌ 𝑣避難 = 𝑣" +𝛾# ̅ 𝜆𝛿学習① ֶशᶃ͕͋Ε ͳ͚Εͷม ٫ͷఔΛද͢ม𝛾Λಋೖ ֶशᶃ ୯Ґ࣌ؒ
ֶशաఔͷදݱ ʻԾఆʼ • ԿֶशΛ܁Γฦͯ͠ɺͦͷޮՌ ̅ 𝜆Ͱݻఆ • ֶशͷִؒ΄΅ҰఆͰɺwaveؒͰ٫ 𝛾ͰޮՌ͕ݮ͢Δ 13
𝑣避難 = 𝑣" +𝛾!$% ̅ 𝜆𝛿&'() % + 𝛾!$* ̅ 𝜆𝛿&'() * + 𝛾!$# ̅ 𝜆𝛿&'() # + ⋯ = 𝑣" + ̅ 𝜆 * +,% ! 𝛾!$+𝛿+ • ਪఆରɺ ̅ 𝜆ʢֶशʹΑΔޮՌʣͱ 𝛾ʢ٫ʣ શ 𝑥 wave͋Δͱ͖ɺwave 𝑥ޙͷޮ༻ͷ֬ఆ߲ɺ
ֶशσʔλͷऔಘ • ෳwaveͷߦಈσʔλ͕͋Ε٫܇࿅ޮՌͷਪఆ͕Մೳ 14 ࠞࡶใ ආ܇࿅ ආ܇࿅ ආ܇࿅ ࠞࡶใ ਁਫใ
ආ܇࿅ ࠞࡶใ ਁਫใ ආߦಈ SPௐࠪᶃ 2022/3/2 ~ 4 ආߦಈ SPௐࠪᶄ 2022/3/11 ~ 15 ආߦಈ SPௐࠪᶅ 2022/3/25 ~ 29 ආߦಈ SPௐࠪᶆ 2022/4/14 ~ 20 ࠞࡶใ ਁਫใ 272໊
܇࿅ͱใఏڙͷ༷ࢠ 15 1 2 3 ᶃେౡஸஂ ϋβʔυใ ྟւ෦ͷ΄͏͕ਫ ʹରͯ҆͠શͱ͍͏ ͷײͱҧ͏ɻ
ॳΊͯͬͨɻ ਁਫҬʹॅΉߴྸঁੑ
ආతબϞσϧ – 2ͭͷಈֶੑ 16 ࣗ ආॴ A ආॴ B wave1
wave2 ࡂ࣌ ಈతࢄબϞσϧ ආܦݧ ࡂؒ ޮ༻ͷߋ৽ 𝑝 𝑠!"# 𝑠! = 𝑒 # $ % 𝑠!"# 𝑠! ; 𝜽 "&'! ("#$ ∑ ("#$ % ∈* (" 𝑒 # $ % 𝑠!"# + 𝑠! ; 𝜽 "&'! ("#$ % 𝑣!"# = 𝑣$ + 𝜆 % %,&' % 𝛾%(%, 𝛿% wave間 wave
waveؒ ֶशύϥϝʔλͷਪఆ 17 wave1避難者 wave1非避難者 推定値 t値 推定値 t値 非避難効用の変化
(出発時刻選択) 48h前固有項 0.362 2.08* 0.224 0.73 24h前固有項 0.344 1.85 0.862 2.25* 12h前固有項 -0.303 -1.28 -1.541 -1.89 6h前固有項 -1.236 -3.39** 2.173 2.08* 目的地効用の変化 ハザードマップ内 -0.683 -1.40 -1.128 -1.59 避難訓練参加 (自宅選択時) -0.580 -1.05 0.004 0.01 目的地の混雑情報 (非自宅選択時) -0.433 -1.38 -2.017 -2.86** 記憶率 0.143 0.48 0.321 1.20 サンプル数 100 144 初期対数尤度 -723.9 -290.0 最終対数尤度 -682.2 -197.8 尤度比 0.058 0.318 修正済尤度比 0.047 0.290 *:5%有意, **1%有意 • wave1Ͱආ͢Δͱճͨ͠ਓͱͦ͏Ͱͳ͍ਓʹ͚ͯਪఆ ආͷબ͕ݩ͔ Β͍ਓɺ܇࿅ ࢀՃͷޮՌ͕ೝΊ ΒΕͳ͍͕ɺࠞࡶ Λආ͚Α͏ͱ͢Δ ̅ 𝜆 𝛾 忘却率
waveؒ ֶशύϥϝʔλͷਪఆ 18 EMクラス1 EMクラス2 推定値 t値 推定値 t値 非避難効用の変化
(出発時刻選択) 48h前固有項 11.871 0.10 -0.053 -0.30 24h前固有項 0.369 2.14* 0.237 1.11 12h前固有項 -8.180 -0.15 0.143 0.63 6h前固有項 8.740 0.15 -2.449 -5.46** 目的地効用の変化 ハザードマップ内 -2.144 -2.28* 0.847 1.41 避難訓練参加 (自宅選択時) -1.902 -2.20* -0.629 -0.74 目的地の混雑情報 (非自宅選択時) -3.598 -3.09** 0.028 0.08 記憶率 1 4.15** 0.213 1.17 サンプル数 100 初期対数尤度 -723.9 最終対数尤度 -571.7 尤度比 0.210 修正済尤度比 0.188 *:5%有意, **1%有意 Ϋϥε1 = • ਁਫ͢Δॴʹߦ͖ͨ ͘ͳ͍ • ܇࿅ࢀՃʹΑΓආ ޮ༻্͕ঢ͢Δ • ࠞࡶ͢Δॴʹߦ͖ͨ ͘ͳ͍ ͱֶश͢Δൣ Ϋϥε2 = ใఏڙʹײ͕ͳ͍ • wave1Ͱආ͢Δͱճͨ͠ਓͷதʹҟ࣭ੑ͕͋Δͱߟ͑ɺજ ࡏΫϥεϞσϧͰਪఆ ̅ 𝜆 𝛾 忘却率
ආ܇࿅ࢀՃʹΑΔආޮ༻ͷมԽ 19 ࣌ؒ ආ܇࿅ᶃ ආ܇࿅ᶄ 𝑣) ආޮ༻ 𝑣 ආ 2िؒ
−3.60 -0.63 Ϋϥε1 Ϋϥε2
ࠞࡶใఏڙʹΑΔతޮ༻ͷมԽ 20 ࣌ؒ ใఏڙᶃ ใఏڙᶄ ආޮ༻ 𝑣 ආ 2िؒ −1.90
0.03 Ϋϥε1 Ϋϥε2
·ͱΊ üكগࣄʹର͢Δֶशͱ٫ͷաఔΛϞσϧԽ ü࣮ݧσʔλʹΑΔύϥϝʔλਪఆͰ܇࿅ͱใͷֶशաఔΛੳ üใఏڙܦݧʹର͢Δֶशͷఔͱɺ٫ͷ͞ʹҟ࣭ੑ͕ ͋Δ͜ͱΛ໌Β͔ʹͨ͠ ࠓޙͷํੑ Øใఏڙʹର͢ΔԠͷҟ࣭ੑΛར༻ͯ͠ɺආަ௨ͷधཁɾܦ ࿏ɾతͷ࠷ద੍ޚൃల Ø٫ͷԾఆͷ؇ →
ܦա࣌ؒͷߏԽɺม͝ͱʹҟͳΔ٫ͷઃఆ 21