evacuation networks. Procedia-social and behavioral sciences, 17, 405-415. 2. 安藤宏恵, 倉内⽂孝, & 杉浦聡志. (2016). 時空間拡張ネットワークを⽤いたリンクベース最適避難計画モデルの構築. ⼟⽊学会論⽂集 D3 (⼟⽊計画 学), 72(5), I_683-I_694. 3. Ito, T., Demaine, E. D., Harvey, N. J., Papadimitriou, C. H., Sideri, M., Uehara, R., & Uno, Y. (2011). On the complexity of reconfiguration problems. Theoretical Computer Science, 412(12-14), 1054-1065. 4. Nishimura, N. (2018). Introduction to reconfiguration. Algorithms, 11(4), 52. 5. Gajjar, K., Jha, A. V., Kumar, M., & Lahiri, A. (2024). Reconfiguring shortest paths in graphs. Algorithmica, 86(10), 3309-3338 6. Ohsaka, N., & Matsuoka, T. (2022, February). Reconfiguration problems on submodular functions. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining (pp. 764-774). 7. 鈴⽊顕. (2023). 最適化遷移を⽤いた配電網の切替⼿順の算出. オペレーションズ・リサーチ= Communications of the Operations Research Society of Japan: 経営の科学, 68(7), 356-362. 8. Ito, T., Kawahara, J., Nakahata, Y., Soh, T., Suzuki, A., Teruyama, J., Toda, T., 2023. Zdd-based algorithmic framework for solving shortest reconfiguration problems, in: International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research, Springer. pp. 167–183. 9. Xie, C., Lin, D. Y., & Waller, S. T. (2010). A dynamic evacuation network optimization problem with lane reversal and crossing elimination strategies. Transportation research part E: logistics and transportation review, 46(3), 295-316. 10. Di, Z., & Yang, L. (2020). Reversible lane network design for maximizing the coupling measure between demand structure and network structure. Transportation Research Part E: Logistics and Transportation Review, 141, 102021. 11. Zhao, J., Ma, W., Liu, Y., & Yang, X. (2014). Integrated design and operation of urban arterials with reversible lanes. Transportmetrica B: Transport Dynamics, 2(2), 130-150. 12. Shahparvari, S., Mohammadi, M., Peszynski, K., & Rickards, L. (2024). How contraflow enhances clearance time during assisted mass evacuation–A case study exploring the Australian 2013–14 Gippsland bushfires. Transportation Research Part A: Policy and Practice, 189, 104197. 13. Lu, Q. L., Sun, W., Lyu, C., Schmöcker, J. D., & Antoniou, C. (2025). Post-disruption lane reversal optimization with surrogate modeling to improve urban traffic resilience. Transportation Research Part B: Methodological, 197, 103237. 14. Liu, J., Jiang, R., Liu, Y., Jia, B., Li, X., & Wang, T. (2024). Managing evacuation of multiclass traffic flow: Fleet configuration, lane allocation, lane reversal, and cross elimination. Transportation research part E: logistics and transportation review, 183, 103430. 15. Wollenstein-Betech, S., Paschalidis, I. C., & Cassandras, C. G. (2022). Optimizing lane reversals in transportation networks to reduce traffic congestion: A global optimization approach. Transportation research part C: emerging technologies, 143, 103840. 16. Zhang, Q., Liu, S. Q., & D’Ariano, A. (2023). Bi-objective bi-level optimization for integrating lane-level closure and reversal in redesigning transportation networks. Operational Research, 23(2), 23. 17. Meng, Q., Khoo, H. L., & Cheu, R. L. (2008). Microscopic traffic simulation model-based optimization approach for the contraflow lane configuration problem. Journal of Transportation Engineering, 134(1), 41-49. 18. ⽵居広樹, 奥村誠, & ⽖林康太. (2019). 津波避難におけるコントラフロー適⽤区間に関する研究. 交通⼯学論⽂集, 5(2), A_56-A_63. 19. Karoonsoontawong, A., & Lin, D. Y. (2011). Time-varying lane-based capacity reversibility for traffic management. Computer-Aided Civil and Infrastructure Engineering, 26(8), 632-646. 39 参考⽂献