Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DeepSeek-R1:最新の大規模言語モデル
Search
stoneweb
February 02, 2025
Technology
0
81
DeepSeek-R1:最新の大規模言語モデル
stoneweb
February 02, 2025
Tweet
Share
More Decks by stoneweb
See All by stoneweb
ChatGPTのプロンプトの基本的な書き方
stoneweb
1
89
ChatGPTを業務に活用する具体例
stoneweb
0
86
ChatGPTのAIエージェント「Operator」について
stoneweb
0
45
Perplexityのスペースを使って簡単にAIクローンを作る方法
stoneweb
0
74
ChatGPTで作成した記事をPerplexity・Felo・Grokでファクトチェックする方法
stoneweb
0
240
ChatGPTとは
stoneweb
0
87
Other Decks in Technology
See All in Technology
サーバシステムを無理なくコンテナ移行する際に伝えたい4つのポイント/Container_Happy_Migration_Method
ozawa
1
120
モンテカルロ木探索のパフォーマンスを予測する Kaggleコンペ解説 〜生成AIによる未知のゲーム生成〜
rist
4
1.3k
アプリケーション固有の「ロジックの脆弱性」を防ぐ開発者のためのセキュリティ観点
flatt_security
40
15k
ソフトウェア開発現代史: なぜ日本のソフトウェア開発は「滝」なのか?製造業の成功体験とのギャップ #jassttokyo
takabow
3
1.8k
テキスト解析で見る PyCon APAC 2025 セッション&スピーカートレンド分析
negi111111
0
250
AWSエンジニアがSAPのデータ抽出してみた
mayumi_hirano
0
110
FinOps_Demo
tkhresk
0
110
Webアプリを Lambdaで動かすまでに考えること / How to implement monolithic Lambda Web Application
_kensh
1
360
Re:VIEWで書いた「Compose で Android の edge-to-edge に対応する」をRoo Codeで発表資料にしてもらった
tomoya0x00
0
240
SREが実現する開発者体験の革新
sansantech
PRO
0
130
Amebaにおける Platform Engineeringの実践
kumorn5s
5
840
新卒1年目のフロントエンド開発での取り組み/New grad front-end efforts
kaonavi
0
140
Featured
See All Featured
Automating Front-end Workflow
addyosmani
1369
200k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.3k
The World Runs on Bad Software
bkeepers
PRO
67
11k
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
25k
Making the Leap to Tech Lead
cromwellryan
133
9.2k
Designing for humans not robots
tammielis
251
25k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
12
630
Building a Modern Day E-commerce SEO Strategy
aleyda
39
7.2k
Transcript
DeepSeek-R1: 最新の⼤規模 ⾔語ムヅラ DeepSeek-R1は、中国のAI企業DeepSeekによって開発された最新の⼤規模 ⾔語ムヅラ(LLM)で、2025年1⽉20⽇にエヺフヱセヺシとして公開されま した。このムヅラは、特に推論能⼒に特化しており、OpenAIのo1ムヅラと 同等、またはそれ以上の性能を持つとされています。DeepSeek-R1は、商 業利⽤を含む⾃由な利⽤が可能なMITョアスヱシのもとで提供されていま す。
主な特徴 エヺフヱセヺシ MITョアスヱシにより、開発者はムヅラを⾃由にォシソボ アジし、商業利⽤も可能です。 ⾼い推論能⼒ 数学的問題解決やフルギョポヱギ⽀援など、論理的思考を 要するソシキにおいて⾼精度な結果を⽰します。具体的に は、数学プヱタボヺキ「MATH-500」で97.3%の正解率を 記録し、フルギョポヱギ競技コアテ「Codeforces」では 96.3ハヺスヱソアラを達成しています。
強化学習の活⽤ DeepSeek-R1は、強化学習を⽤いた⾃律的な学習を⾏ い、さらに⾼品質なヅヺソを⽤いたビゟアヱタャヺドヱギ も⾏っています。この゠フルヺタにより、ムヅラは複雑な 問題解決能⼒を獲得し、特に数学やフルギョポヱギの分野 で優れた性能を発揮します。 ⼤規模ケヱツカシテ対応 最⼤128Kテヺキヱの⼊⼒を処理できるため、⻑⽂のデカ ャミヱテや⻑時間の会話においても⼀貫性のある応答を⽣ 成できます。
性能とベンチマーク 数学的推論 AIME 2024で79.8%のスコアを達成 し、MATH-500では97.3%の正解率 を記録しています。 プログラミング能⼒ Codeforcesで2029という⾼レーテ ィングを獲得し、プログラミング関 連のタスクに最適です。
総合的な知識理解⼒ MMLUテストで90.8%のスコアを達 成し、さまざまな知識を問うタスク においても⾼い性能を⽰していま す。
ケシテと利⽤⽅法 ⼊⼒テヺキヱ カメチサャバチテ時は$0.14/百万テヺキヱ、カメチサャポ シ時は$0.55/百万テヺキヱ。 出⼒テヺキヱ $2.19/百万テヺキヱ。 このように、DeepSeek-R1は⾼性能でありながら、ケシテハビェヺボヱシにも優れたムヅラです。
注意点 ヅヺソ保護に関する懸念 中国企業が開発したムヅラであるため、⼀部の利⽤者はヅヺソ 保護に関する懸念を抱いています。API経由で⼊⼒したヅヺソ が学習ヅヺソとして使⽤される可能性があるため、機密情報を 扱う際には注意が必要です。 特定の制約 台湾や中国政府に関連する質問では特定の制約が確認されてい ます。
まとめ DeepSeek-R1は、エヺフヱセヺシでありながら⾼い推論能⼒を持つ⼤規模 ⾔語ムヅラで、特に数学やフルギョポヱギの分野での応⽤が期待されていま す。強化学習を活⽤した⾃律的な学習フルスシにより、従枈のムヅラに⽐べ て優れた性能を発揮しています。商業利⽤が可能で、ケシテ効率も⾼いた め、研究機関や企業にとっても魅⼒的な選択肢となるでしょう。
STONEWEB 合同会社ストーンウェブ 経営者の「困った」にワンストップで応える!幅広い実務経験と経営視点をあわせ持つパートナーとして、WebサイトやSNS運⽤ はもちろん、採⽤やブランディングなど複数の課題を⼀括サポート。 余計なやり取りやコストを抑えながら、経営者の意思決定と 戦略⽴案に集中できる環境を整えます。 ご相談はこちら