Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DeepSeek-R1:最新の大規模言語モデル
Search
stoneweb
February 02, 2025
Technology
0
100
DeepSeek-R1:最新の大規模言語モデル
stoneweb
February 02, 2025
Tweet
Share
More Decks by stoneweb
See All by stoneweb
ChatGPTのプロンプトの基本的な書き方
stoneweb
1
150
ChatGPTを業務に活用する具体例
stoneweb
0
97
ChatGPTのAIエージェント「Operator」について
stoneweb
0
54
Perplexityのスペースを使って簡単にAIクローンを作る方法
stoneweb
0
92
ChatGPTで作成した記事をPerplexity・Felo・Grokでファクトチェックする方法
stoneweb
0
300
ChatGPTとは
stoneweb
0
100
Other Decks in Technology
See All in Technology
Whats_new_in_Podman_and_CRI-O_2025-06
orimanabu
3
180
Tensix Core アーキテクチャ解説
tenstorrent_japan
0
360
成立するElixirの再束縛(再代入)可という選択
kubell_hr
0
310
Autonomous Database サービス・アップデート (FY25)
oracle4engineer
PRO
2
770
本部長の代わりに提案書レビュー! KDDI営業が毎日使うAIエージェント「A-BOSS」開発秘話
minorun365
PRO
14
1.8k
kubellが挑むBPaaSにおける、人とAIエージェントによるサービス開発の最前線と技術展望
kubell_hr
1
310
RubyOnRailsOnDevin+α / DevinMeetupJapan#2
ginkouno
0
440
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
6.4k
Tenstorrent HW/SW 概要説明
tenstorrent_japan
0
400
“プロダクトを好きになれるか“も QAエンジニア転職の大事な判断基準だと思ったの
tomodakengo
0
140
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
38k
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
12k
Featured
See All Featured
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
A better future with KSS
kneath
239
17k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.3k
Embracing the Ebb and Flow
colly
86
4.7k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
RailsConf 2023
tenderlove
30
1.1k
How GitHub (no longer) Works
holman
314
140k
Raft: Consensus for Rubyists
vanstee
140
7k
How to Ace a Technical Interview
jacobian
276
23k
Transcript
DeepSeek-R1: 最新の⼤規模 ⾔語ムヅラ DeepSeek-R1は、中国のAI企業DeepSeekによって開発された最新の⼤規模 ⾔語ムヅラ(LLM)で、2025年1⽉20⽇にエヺフヱセヺシとして公開されま した。このムヅラは、特に推論能⼒に特化しており、OpenAIのo1ムヅラと 同等、またはそれ以上の性能を持つとされています。DeepSeek-R1は、商 業利⽤を含む⾃由な利⽤が可能なMITョアスヱシのもとで提供されていま す。
主な特徴 エヺフヱセヺシ MITョアスヱシにより、開発者はムヅラを⾃由にォシソボ アジし、商業利⽤も可能です。 ⾼い推論能⼒ 数学的問題解決やフルギョポヱギ⽀援など、論理的思考を 要するソシキにおいて⾼精度な結果を⽰します。具体的に は、数学プヱタボヺキ「MATH-500」で97.3%の正解率を 記録し、フルギョポヱギ競技コアテ「Codeforces」では 96.3ハヺスヱソアラを達成しています。
強化学習の活⽤ DeepSeek-R1は、強化学習を⽤いた⾃律的な学習を⾏ い、さらに⾼品質なヅヺソを⽤いたビゟアヱタャヺドヱギ も⾏っています。この゠フルヺタにより、ムヅラは複雑な 問題解決能⼒を獲得し、特に数学やフルギョポヱギの分野 で優れた性能を発揮します。 ⼤規模ケヱツカシテ対応 最⼤128Kテヺキヱの⼊⼒を処理できるため、⻑⽂のデカ ャミヱテや⻑時間の会話においても⼀貫性のある応答を⽣ 成できます。
性能とベンチマーク 数学的推論 AIME 2024で79.8%のスコアを達成 し、MATH-500では97.3%の正解率 を記録しています。 プログラミング能⼒ Codeforcesで2029という⾼レーテ ィングを獲得し、プログラミング関 連のタスクに最適です。
総合的な知識理解⼒ MMLUテストで90.8%のスコアを達 成し、さまざまな知識を問うタスク においても⾼い性能を⽰していま す。
ケシテと利⽤⽅法 ⼊⼒テヺキヱ カメチサャバチテ時は$0.14/百万テヺキヱ、カメチサャポ シ時は$0.55/百万テヺキヱ。 出⼒テヺキヱ $2.19/百万テヺキヱ。 このように、DeepSeek-R1は⾼性能でありながら、ケシテハビェヺボヱシにも優れたムヅラです。
注意点 ヅヺソ保護に関する懸念 中国企業が開発したムヅラであるため、⼀部の利⽤者はヅヺソ 保護に関する懸念を抱いています。API経由で⼊⼒したヅヺソ が学習ヅヺソとして使⽤される可能性があるため、機密情報を 扱う際には注意が必要です。 特定の制約 台湾や中国政府に関連する質問では特定の制約が確認されてい ます。
まとめ DeepSeek-R1は、エヺフヱセヺシでありながら⾼い推論能⼒を持つ⼤規模 ⾔語ムヅラで、特に数学やフルギョポヱギの分野での応⽤が期待されていま す。強化学習を活⽤した⾃律的な学習フルスシにより、従枈のムヅラに⽐べ て優れた性能を発揮しています。商業利⽤が可能で、ケシテ効率も⾼いた め、研究機関や企業にとっても魅⼒的な選択肢となるでしょう。
STONEWEB 合同会社ストーンウェブ 経営者の「困った」にワンストップで応える!幅広い実務経験と経営視点をあわせ持つパートナーとして、WebサイトやSNS運⽤ はもちろん、採⽤やブランディングなど複数の課題を⼀括サポート。 余計なやり取りやコストを抑えながら、経営者の意思決定と 戦略⽴案に集中できる環境を整えます。 ご相談はこちら