Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Shipping Apps Confidently with Firebase
Search
Subhrajyoti Sen
November 06, 2021
Programming
0
67
Shipping Apps Confidently with Firebase
Subhrajyoti Sen
November 06, 2021
Tweet
Share
More Decks by Subhrajyoti Sen
See All by Subhrajyoti Sen
Updated Lessons from a KMP Developer's Toolkit
subhrajyotisen
0
21
Building Mobile Apps and Scaling them
subhrajyotisen
0
25
Compose Previews as a Power User
subhrajyotisen
1
160
Understanding WindowInsets
subhrajyotisen
0
190
Exploring a KMM Developer’s Toolkit
subhrajyotisen
1
200
Understanding WindowInsets - Android Worldwide
subhrajyotisen
0
310
Understanding WindowInsets
subhrajyotisen
1
190
Demystifying Styles and Themes
subhrajyotisen
0
220
Journey Of Time
subhrajyotisen
0
230
Other Decks in Programming
See All in Programming
contribution to astral-sh/uv
shunsock
0
530
コード生成なしでモック処理を実現!ovechkin-dm/mockioで学ぶメタプログラミング
qualiarts
0
260
EMこそClaude Codeでコード調査しよう
shibayu36
0
390
モテるデスク環境
mozumasu
3
1.3k
Webサーバーサイド言語としてのRustについて
kouyuume
1
4.9k
コードとあなたと私の距離 / The Distance Between Code, You, and I
hiro_y
0
190
Devvox Belgium - Agentic AI Patterns
kdubois
1
150
TransformerからMCPまで(現代AIを理解するための羅針盤)
mickey_kubo
7
5.1k
マンガアプリViewerの大画面対応を考える
kk__777
0
250
CSC509 Lecture 07
javiergs
PRO
0
240
Google Opalで使える37のライブラリ
mickey_kubo
3
140
CSC305 Lecture 10
javiergs
PRO
0
230
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
KATA
mclloyd
PRO
32
15k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
930
Thoughts on Productivity
jonyablonski
70
4.9k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.7k
Being A Developer After 40
akosma
91
590k
Context Engineering - Making Every Token Count
addyosmani
8
300
Transcript
Shipping Apps Con dently with Firebase KeepTruckin Subhrajyoti Sen DevFest
Greece & Cyprus 2021 November 2021
Crashes
Crashlytics
Crashlytics • Automatic crash reporting
Crashlytics • • Automatic crash reporting But no limited to
crash reporting
Recording Non-fatal exceptions
Recording Non-fatal exceptions try { // some code can throw
an exception } catch (e: Exception) { Log.d(TAG, e.localizedMessage) }
Recording Non-fatal exceptions try { // some code can throw
an exception } catch (e: Exception) { Log.d(TAG, e.localizedMessage) }
Recording Non-fatal exceptions try { // some code can throw
an exception } catch (e: Exception) { FirebaseCrashlytics.getInstance().recordException(e) }
Recording Non-fatal exceptions private class CrashReportingTree : Timber.Tree() { }
Recording Non-fatal exceptions private class CrashReportingTree : Timber.Tree() { override
fun log(priority: Int, tag: String?, message: String, t: Throwable?) { } }
Recording Non-fatal exceptions private class CrashReportingTree : Timber.Tree() { override
fun log(priority: Int, tag: String?, message: String, t: Throwable?) { if (priority == Log.ERROR && t != null) { FirebaseCrashlytics.getInstance().recordException(t) } } }
Recording Non-fatal exceptions class MainApplication : Application() { override fun
onCreate() { super.onCreate() Timber.plant(CrashReportingTree()) } }
Recording Non-fatal exceptions try { // some code can throw
an exception } catch (e: Exception) { FirebaseCrashlytics.getInstance().recordException(e) }
Recording Non-fatal exceptions try { // some code can throw
an exception } catch (e: Exception) { Timber.e(e) }
Understanding Crashes Better
Analytics
Analytics • We normally use analytics in isolation from crash
reporting
Analytics • • We normally use analytics in isolation from
crash reporting Usually PMs check the analytics and Devs check the crashes
Analytics • • • We normally use analytics in isolation
from crash reporting Usually PMs check the analytics and Devs check the crashes What if you can combine them to get a full view?
Analytics
Analytics
Analytics binding.zoomImage.setOnClickListener { MixpanelAPI.track("Zoom button clicked") }
Analytics binding.zoomImage.setOnClickListener { MixpanelAPI.track("Zoom button clicked") FirebaseAnalytics.getInstance(context) .logEvent("Zoom button clicked",
mapOf("page", "map")) }
Analytics interface AnalyticsProvider { fun track( analyticEvent: String, properties: Map<String,
Any?>? = null ) }
Analytics class FirebaseAnalyticsProvider( private val rebaseAnalytics: FirebaseAnalytics ): AnalyticsProvider {
override fun track(analyticEvent: String, properties: Map<String, Any?>?) { rebaseAnalytics.logEvent(analyticEvent, properties) } }
Analytics class FirebaseAnalyticsProvider( private val rebaseAnalytics: FirebaseAnalytics ): AnalyticsProvider {
override fun track(analyticEvent: String, properties: Map<String, Any?>?) { rebaseAnalytics.logEvent(analyticEvent, properties) } }
Analytics class AnalyticsManager { private val analyticsProviders = mutableListOf<AnalyticsProvider>() fun
addProvider(provider: AnalyticsProvider) { analyticsProviders.add(provider) } }
Analytics class AnalyticsManager { //... fun track(analyticEvent: String, properties: Map<String,
Any?>?) { analyticsProviders.forEach { provider -> provider.track(analyticEvent, properties) } } }
Analytics binding.zoomImage.setOnClickListener { analyticsManager.logEvent( "Zoom button clicked", mapOf("page", "map") )
}
Feature Flags
What's a feature ag?
What's a feature ag? if (isNewFeatureEnabled) { // allow access
to shiny new feature } else { // prevent access to shiny new feature }
Use cases
Use cases • A/B Testing
Use cases • • A/B Testing Rolling out new features
Use cases • • • A/B Testing Rolling out new
features Rolling out rewrite of existing features
Use cases • • • • A/B Testing Rolling out
new features Rolling out rewrite of existing features Merge Work-in-progress features
Types of Feature Flags?
Types of Feature Flags? • Static
Types of Feature Flags? • • Static Decided at build
time
Types of Feature Flags? • • • Static Decided at
build time Based on things like versionCode, buildVariant, etc
Types of Feature Flags? • • • • Static Decided
at build time Based on things like versionCode, buildVariant, etc Dynamic
Types of Feature Flags? • • • • • Static
Decided at build time Based on things like versionCode, buildVariant, etc Dynamic Can be controlled at runtime either locally using dev settings
Types of Feature Flags? • • • • • •
Static Decided at build time Based on things like versionCode, buildVariant, etc Dynamic Can be controlled at runtime either locally using dev settings Or remotely via services like Firebase Remote Con g
None
Show me code!!
interface Con g { val key: String val default: Boolean
val description: String }
enum class FeatureFlags( override val key: String, override val default:
Boolean, override val description: String ): Con g
enum class FeatureFlags( override val key: String, override val default:
Boolean, override val description: String ): Con g { NEW_CHECKOUT_FLOW( "checkout_ ow_v2", true, "Enable checkout ow V2 for trending items" ) }
interface FeatureFlagProvider { fun getValue(featureFlag: FeatureFlag): Boolean }
class FirebaseFeatureFlagProvider: FeatureFlagProvider { private val remoteCon g = FirebaseRemoteCon
g.getInstance() override fun getValue(featureFlag: FeatureFlag): Boolean { return remoteCon g.getBoolean(featureFlag.key) } }
class RemoteCon gManager( private val featureFlagProvider: FeatureFlagProvider ) { fun
isFeatureEnabled(featureFlag: FeatureFlag) = featureFlagProvider.getValue(featureFlag) }
if (remoteCon gManager.isFeatureEnabled(NEW_CHECKOUT_FLOW)) { // allow access to shiny new
feature } else { // prevent access to shiny new feature }
Using Feature Flags effectively
Using Feature Flags effectively • De ne success metrics
Using Feature Flags effectively • • De ne success metrics
Less Crashes?
Using Feature Flags effectively • • • De ne success
metrics Less Crashes? Smoother experience?
Using Feature Flags effectively • • • • De ne
success metrics Less Crashes? Smoother experience? Implement using your Analytics library (like Mixpanel)
Using Feature Flags effectively • • • • • De
ne success metrics Less Crashes? Smoother experience? Implement using your Analytics library (like Mixpanel) Create dashboards to compare
@iamsubhrajyoti https://calendly.com/subhrajyotisen
Credits: UC Davis