Grammar, More Features. Proceedings of the 2014 Association for Computational Linguistics. Abstract: We present a parser that relies primarily on extracting information directly from surface spans rather than on propagation information through enriched grammar structure. For example, instead of creating separate grammar symbol to mark the definiteness of an NP, our parser might instead from the first word of the NP. Moving the context out of grammar and onto surface features can greatly simplify the structural component of the parser: because so many deep syntactic cues have surface reflexes, our system can still parse accurately with context-free backbones. Keeping the structural backbone and moving features to new languages and even to new tasks.(Seddah et al., 2013) On the SPMRL 2013 multilingual constituency parsing shared task(Seddah et al.,2013) our system outperforms the top single parser system of Bjorkelund et al.(2013) on a range of languages. In addition, despite being designed for syntactic analysis, our system also achieves state-of-the-art numbers on the structural sentiment task of Socher et al.(2013). Finally, we show that, in the both syntactic analysis and sentiment analysis, many broad linguistic trends can be captured vi surface features. 要旨: 文法規則が少なくとも、表層系(surface)から得られる情報をしっかり使 うことで、文法規則を抑えつつも多くのタスクで大きい情報源となる、と 主張. 本研究ではそれをPCFGを中心に検証している。 2014/8/1 長岡技術科学大学 自然言語処理研究室 2014年度 文献紹介 Less Grammar, More Features.