Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Rettyにおけるデータ活用について
Search
takegue
May 10, 2018
Business
0
900
Rettyにおけるデータ活用について
takegue
May 10, 2018
Tweet
Share
More Decks by takegue
See All by takegue
不自然言語の自然言語処理: コード補完を支える最新技術
takegue
1
860
つかわれるプラットフォーム 〜デザイン編〜@DPM#2
takegue
2
12k
カルチャーとエンジニアリングをつなぐ データプラットフォーム
takegue
4
6.4k
toC企業でのデータ活用 (PyData.Okinawa + PythonBeginners沖縄 合同勉強会 2019)
takegue
4
1.1k
Sparse Overcomplete Word Vector Representations
takegue
0
210
Aligning Sentences from Standard Wikipedia to Simple Wikipedia
takegue
0
210
High-Order Low-Rank Tensors for Semantic Role Labeling
takegue
0
120
Dependency-based empty category detection via phrase structure trees
takegue
0
78
A simple pattern-matching algorithm for recovering empty nodes and their antecedents
takegue
0
120
Other Decks in Business
See All in Business
採用説明資料
recruit_mitsukaru
0
790
Company Deck_2025.06
sixtypercent
0
200
LW_brochure_engineer
lincwellhr
0
34k
そのAWSコスト、もっと下げられるかも? 150社超のコスト分析で見えた「鉄板」削減Tips
o2mami
1
2.2k
ベタートラップと夏
mosa_siru
8
2.8k
フルリモートで社内にどうやって自分の居場所を作るのか?
satoshi256kbyte
1
220
なぜConfluence Cloudだったのか?〜『運用効率と将来性』から見る最適解と、予期せぬ課題を乗り越えた移行のリアル~ / Why-we-choose-confluence-cloud
medley
0
180
『Policy Fund』採択団体 政策提言集/Policy Fund Report
polipoli
0
410
CSRレポート2025_ギークス株式会社
geechs
PRO
0
560
アウトカムファーストな専門技術組織の構築と運用のための取り組み / Efforts to Build and Operate an Outcome-First Technical Expertise Organization
lycorptech_jp
PRO
1
160
企業向けチーム間交渉ゲーム「トレード&グロース」
chibanba1982
PRO
1
120
【DearOne】Dear Newest Member
hrm
2
10k
Featured
See All Featured
Optimizing for Happiness
mojombo
379
70k
Agile that works and the tools we love
rasmusluckow
329
21k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
800
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Site-Speed That Sticks
csswizardry
10
660
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
Music & Morning Musume
bryan
46
6.6k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
Transcript
Retty におけるデータ活用 竹野 峻輔(TAKENO Shunsuke) 2018.05.09
自己紹介
竹野 峻輔 Retty では - 集計・分析基盤開発 / 分析 / 機械学習
- Web開発 (ログ〜ロジック 開発) - M.Eng. (自然言語処理) その他 - もくもくPython勉強会@Retty - 寄稿: Software Design 6月/ OR学会 特集「自 然言語処理と数理モデル」 - Qiita「負荷試験のためのノウハウと Webフレームワーク の負荷試験 (Python,Node,Go,PHP)」
Retty について
Rettyにおけるデータ活用の取り組みの紹介
キャッチコピー生成 (自然言語処理) (自動) 二戸産のそばを店内で製粉し、挽きたて・打ちたて・茹でたての「3たて」で提供 (人手) お婆ちゃんの家に遊びに来たような古民家で頂くコシの強いお蕎麦は美味 「AIが飲食店のキャッチコピー、優先度学習を採用したRetty」 (5/9) http://tech.nikkeibp.co.jp/atcl/nxt/column/18/00275/050100002/ まとめページやおすすめのお店
/ユーザ レコメンド(情報推薦 ) Native App(iPhone) Web(desktop/mobile)
“バエ”な写真の発掘 (画像処理) キャッチコピー生成 (自然言語処理) (自動) 二戸産のそばを店内で製粉し、挽きたて・打ちたて・茹でたての「3たて」で提供 (人手) お婆ちゃんの家に遊びに来たような古民家で頂くコシの強いお蕎麦は美味 「AIが飲食店のキャッチコピー、優先度学習を採用したRetty」 (5/9)
http://tech.nikkeibp.co.jp/atcl/nxt/column/18/00275/050100002/ まとめページやおすすめのお店 /ユーザ レコメンド(情報推薦 ) Native App(iPhone) Web(desktop/mobile) 「【飯テロ注意】新世代 AIによるグルメサービス Rettyの進化」 https://qiita.com/taru0216/items/438bc9119d9c6c3ee86e
”ビッグデータ” あるあるの苦労話 ※ 個人の見解です
とりあえず溜まったデータはある データ周りの苦労話 1 実際 7~8割ぐらい使わない ほんとに欲しいデータは 無い/使えない/整っていない データセットとしてのアノテーションの基準が整っていない 前処理 9割
期待と現実のズレも割とビッグ 2 人間の感覚が基準で言語化 /数値化できない (≠ 機械的な基準) SOTAが 思ったよりも使えない .... 超えられない平均の壁
データ周りの苦労話 いきなりは精度はでない
手段が目的化する 3 AI(人工知能)が使いたい! ビッグデータ使ってすごいことしたい! データドリブンにしたい! データ周りの苦労話 SOTAの手法を使いたい
手段が目的化する 期待と現実のズレもビッグ とりあえず溜まったデータはある 2 3 1 → 5S(整理・整頓・清掃・清潔・躾) → 手法を使い方ではなくて、データ(が生まれる構造)の活かし方を考える
→ 最初に調整する / 短いイテレーションで MTGを開く → 超安全策 と チャレンジ策 必ず2つは用意する. 3つはあるとベスト → 「魔王を倒すことではなくて、倒して世界平和にするんだろう...!」 っ辛抱よく伝える → 「問題の難しさ把握するためにも一番簡単な方法とる」 それでもデータを使っていくことで価値がある
ベンチャーとして半歩先を踏み出すために
目的 データ 手段
目的 データ 手段 ほかの2つを広げる 努力する
目的 データ 手段 ほかの2つを広げる 努力する 個人の能力値 組織の能力値
プログラマよりもエンジニア、エンジニアよりもアーキテクトであれ - データの取得〜活用 / 評価 まで 詳しい人 が 密に携わる -
(収集) ログ量の調整 / 欲しいデータの取得 → ログ送信 〜 ログ基盤 に携わる - (実装) スケール性 / 効率性 / 妥当性 → 月間3000万UUに耐えうる良いロジック開発 - (評価) サービスの成長 → 精度評価 からの KPI 評価。 - (運用) サービスに統合した手法の評価・改良 → 機械学習周りはリリースしてからが本番... 個別の知見が他のステップの知見となる (データの作り方/運用が少ない機械学習) - しんどい が結果的に 手っ取り早い - 色々なところでの スピード感 (データは集めるまでに時間を要する) - できるまでわからない、効果実感 - 一気通貫でやれた方が アウトプットの質が上がる - 手法の提案よりもシステムの提案
食を通じて世界中の人々を Happy に fin. すべてはビジョンのために